Skip to main content

Person

Steve Wika


Earth Resources Observation and Science (EROS) Center

Email: swika@contractor.usgs.gov
Office Phone: 605-594-6993
ORCID: 0000-0001-9992-8973

Location
47914 252nd Street
Sioux Falls , SD 57198-9801
US

Supervisor: Frederick M Badke
thumbnail
The USGS Forecasting Scenarios of Land-use Change (FORE-SCE) model was used to produce an agricultural biofuel scenarios for the Northern Glaciated Plains, from 2012 to 2030. The modeling used parcel data from the USDA's Common Land Unit (CLU) data set to represent real, contiguous ownership and land management units. A Monte Carlo approach was used to create 50 unique replicates of potential landscape conditions in the future, based on a agricultural scenario from the U.S. Department of Energy's Billion Ton Update. The data are spatially explicit, covering the entire Northern Glaciated Plains ecoregions (an EPA Level III ecoregion), with a spatial resolution of 30-meters and 22 unique land-cover classes (including...
Abstract (from ScienceDirect): The Land Change Monitoring, Assessment, and Projection (LCMAP) initiative uses temporally dense Landsat data and time series analyses to characterize landscape change in the United States from 1985 to present. LCMAP will be used to explain how past, present, and future landscape change affects society and natural systems. Here, we describe a modeling framework for producing high-resolution (spatial and thematic) landscape projections at a national scale, using a unique parcel-based modeling framework. The methodology was tested by modeling 11 land use scenarios and 3 climate realizations for the U.S. Great Plains. Results demonstrate 1) an ability to balance competing land-use demands...
thumbnail
A new version of USGS’s FORE-SCE model was used to produce unprecedented landscape projections for the Upper Missouri River Basin region of the northern Great Plains. The projections are characterized by 1) high spatial resolution (30-meter cells), 2) high thematic resolution (29 land use and land cover classes), 3) broad spatial extent (covering approximately 516,000 square kilometers), 4) use of real land ownership boundaries to ensure realistic representation of landscape patterns, and 5) representation of both anthropogenic land use and natural vegetation change. A variety of scenarios were modeled from 2014 to 2100, with decadal timesteps (i.e., 2014, 2020, 2030, etc.). Modeled land use and natural vegetation...
The USGS’s FORE-SCE model was used to produce a long-term landscape dataset for the Delaware River Basin (DRB). Using historical landscape reconstruction and scenario-based future projections, the data provided land-use and land-cover (LULC) data for the DRB from year 1680 through 2100, with future projections from 2020-2100 modeled for 7 different socioeconomic-based scenarios, and 3 climate realizations for each socioeconomic scenario (21 scenario combinations in total). The projections are characterized by 1) high spatial resolution (30-meter cells), 2) high thematic resolution (20 land use and land cover classes), 3) broad spatial extent (covering the entirety of the Delaware River basin, corresponding to USGS...
View more...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.