Skip to main content

Person

Stefanie Kagone


Earth Resources Observation and Science (EROS) Center

Email: skagone@contractor.usgs.gov
Office Phone: 605-594-2862
ORCID: 0000-0002-2979-4655

Location
EROS - Mundt Federal Building
47914 252nd Street
Sioux Falls , SD 57198-9801
US

Supervisor: Jacob L Stockwell
thumbnail
Estimation of irrigation water use provides essential information for the management and conservation of agricultural water resources. The blue water evapotranspiration (BWET) raster dataset at 30-meter resolution is created to estimate agricultural irrigation water consumption. The dataset contains seasonal total (1 May to 30 September) BWET time series (1986 – 2020) for the croplands across the U.S. High Plains aquifer region. The BWET estimates are generated by integrating an energy-balance ET model (Operational Simplified Surface Energy Balance model) and a water-balance ET model (Vegetation ET model). BWET in croplands reflects crop consumptive use of irrigation water extracted from surface water and groundwater...
thumbnail
The surface psychrometric constant (spc) is a key model parameter in actual evapotranspiration modeling using the Operational Simplified Surface Energy Balance (SSEBop) model for establishing model boundary limits for the dry/bare and wet/vegetated surface conditions. The inverse of the constant (1/spc) represents the temperature difference (dT) between the bare/dry surface and the air temperature at the canopy level. The main output of the SSEBop model is an ET fraction (0-1) and, when combined with reference (“maximum”) ET, produces an actual ET estimate from satellite-observed land surface temperature. This dT is determined using net radiation inputs under gray-sky radiations from the ERA-5 datasets, i.e., Surface...
The evaluation of historical water use in the Upper Rio Grande Basin (URGB), United States and Mexico, using Landsat-derived actual evapotranspiration (ETa) from 1986 to 2015 is presented here as the first study of its kind to apply satellite observations to quantify long-term, basin-wide crop consumptive use in a large basin. The rich archive of Landsat imagery combined with the Operational Simplified Surface Energy Balance (SSEBop) model was used to estimate and map ETa across the basin and over irrigated fields for historical characterization of water-use dynamics. Monthly ETa estimates were evaluated using six eddy-covariance (EC) flux towers showing strong correspondence (r2 > 0.80) with reasonable error rates...
thumbnail
The data are a long-term (1980-present), daily reanalysis of reference evapotranspiration, covering the globe at a spatial resolution of 0.625° Longitude x 0.5° Latitude. Reference evapotranspiration is a measure of evaporative demand, or the "thirst of the atmosphere", basically how much moisture from the surface could evaporate into overpassing air, assuming (i) that enough water is available to evaporate and (ii) the surface is covered with a specific reference crop that completely shades the ground (some other conditions also apply). For this dataset, reference evapotranspiration is derived from the daily implementation of the Penman-Monteith reference evapotranspiration equation (Monteith, 1965) as codified...
thumbnail
The Middle East and North Africa (MENA) region is the most water-scarce region with only two percent of the global average annual rainfall, hence underground aquifers are the major source of water. The need to improve water productivity and increase aquifer storage and recovery (ASR) is driving the efforts for this acceleration of aquifer storage and recovery project. The objective was to model runoff in the study area using multi-source satellite data and identify regions of runoff retention and recharge. Daily runoff is simulated using a saturation excess principle with the VegET model (Senay 2008). It is a spatially explicit (500m grid cell), one-dimensional root-zone water balance model that is driven by precipitation,...
View more...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.