Skip to main content

Person

Erick R Burns

Research Hydrologist

Geology, Minerals, Energy, and Geophysics Science Center

Email: eburns@usgs.gov
Office Phone: 503-251-3250
ORCID: 0000-0002-1747-0506

Supervisor: James E O'connor
thumbnail
A three-dimensional groundwater flow model (MODFLOW-NWT) of the Columbia Plateau Regional aquifer (CPRAS) in Washington, Oregon, and Idaho was developed to provide an integrated understanding of the hydrologic system to implement effective water-resource management strategies. The U.S. Geological Survey (USGS) Groundwater Resources Program assessed the groundwater availability as part of a national study of regional systems (https://pubs.usgs.gov/circ/1323/). The CPRAS assessment includes the status of groundwater resources, how these resources have changed over time, and development and application of tools to estimate system responses to stresses from future uses and climate variability and change. A major product...
thumbnail
These data describe the wells compiled for the Columbia Plateau Regional Aquifer Study (CPRAS). The data included are well ids used in the study, the X and Y coordinates of each well, in feet, in Washington State Plane South NAD 1983 coordinate system (zone 4602), land-surface elevation, in feet, of each well in North American Vertical Datum of 1988 (NAVD 88), the date each well was drilled, well depth, in feet, and quality flags for well location and land-surface elevation.
These data describe the wells and groundwater level elevations compiled for the Columbia Plateau Regional Aquifer Study (CPRAS). The well data included are well ids used in the study, the X and Y coordinates of each well, in feet, in Washington State Plane South NAD 1983 coordinate system (zone 4602), land-surface elevation, in feet, of each well in North American Vertical Datum of 1988 (NAVD 88), the date each well was drilled, well depth, in feet, and quality flags for well location and land-surface elevation. The water-level data included are well ids used in the study, the date of each water-level measurement, the groundwater elevation, in feet, in the North American Vertical Datum of 1988 (NAVD 88), the status...
thumbnail
Despite the proven efficacy of geothermal energy as a city-scale heating and cooling resource, the relative newness of most city-scale applications using diverse technologies has resulted in limited widespread adoption. We aim to develop authoritative information suitable for city-managers and other decision-makers. Geothermal resources are ubiquitous and diverse, with technologies available both for harvesting ambient heat or for storing thermal energy. These local low-carbon, baseload energy sources provide resilience, security, and jobs. The project team proposes to accelerate understanding and possibly energy-solution adoption by developing an international systematic nomenclature to describe the range of...
thumbnail
This archive documents five 30-year SUTRA simulations summarized in Burns at al. (2020), and provides output from one short (2-year) simulation to allow verification that the archive model code runs properly. A modified version of SUTRA 2.2 was used to evaluate Reservoir Thermal Energy Storage by simulating layered system conditions (grid spacing varies depending on simulation run time to prevent boundary effects). This version of SUTRA is summarized in Burns et al. (2015), but in short, the primary differences from the current public-release version (v3) are that cell-by-cell thermal and hydraulic properties can be defined (allowing representation of the layered Portland system) and viscosity and density of water...
View more...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.