Skip to main content

Organization

Earthquake Hazards Program

Earthquake Hazards Program
http://earthquake.usgs.gov/

Location
John W Powell
12201 Sunrise Valley Drive
Reston , VA 20192-0002
USA
Parent Organization: Office of the Associate Director for Natural Hazards
thumbnail
This dataset consists of point cloud data collected in 2016 and 2017 of the lower and upper Scenic Drive landslide locations in La Honda, California. Point cloud data were collected in 2016 to establish baseline for movement detection of past landslides. Point cloud data were collected in 2017 adjacent and upslope of 2016 data to document a newly formed landslide. The data were collected with a Riegl VZ400 Terrestrial Laser Scanner and georeferenced using a Leica Viva GS15 survey grade GPS. The data are delivered as georeferenced (NAD83 UTM zone 10N ellipsoid) classified point clouds, 5 cm resolution digital elevation models, and a text file of surveyed GPS control points. The included files are: LH2017_Jan.laz...
thumbnail
New Zealand’s Alpine Fault (AF) ruptures quasi-periodically in large-magnitude earthquakes. Paleoseismological evidence suggests that about half of all recognized AF earthquakes terminated at the boundary between the Central and South Westland sections of the fault. There, fault geometry and the polarity of uplift change. The South Westland AF exhibits oblique-normal fault motion on a structure oriented 055/82SE that, for at least 35 km along strike, contains saponite-rich principal slip zone gouges. New hydrothermal friction experiments reveal that the saponite fault gouge is frictionally weak, exhibiting friction coefficients between =0.12 and =0.16 for a range of temperatures (T=25–210 C) and effective normal...
thumbnail
The database contains uniformly processed ground motion intensity measurements (peak horizontal ground motions and 5-percent-damped pseudospectral accelerations for oscillator periods 0.1–10 s). The earthquake event set includes more than 3,800 M≥3 earthquakes in Oklahoma and Kansas from January 2009 to December 2016. Ground motion time series were collected out to 500 km. We also relocated the majority of the earthquake hypocenters using a multiple-event relocation algorithm to produce a set of near-uniformly processed hypocentral locations. Details about data processing are reported in the accompanying article. First posted - October 11, 2017 Revised - December 18, 2017, ver. 1.1
thumbnail
The 2018 Kīlauea eruption and caldera collapse generated intense cycles of seismicity tied to repeated large seismic (Mw ~5) collapse events associated with magma withdrawal from beneath the summit. To gain insight into the underlying dynamics and aid eruption response, we applied waveform-based earthquake detection and double-difference location as the eruption unfolded. Here, we augment these rapid results by grouping events based on patterns of correlation-derived phase polarities across the network. From April 29 to August 6, bracketing the eruption, we used ~2800 events cataloged by the Hawaiian Volcano Observatory to detect and precisely locate 44,000+ earthquakes. Resulting hypocentroids resolve complex,...
View more...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.