Skip to main content

Person

Anne B Hoos

Hydrologist

Lower Mississippi-Gulf Water Science Center

Email: abhoos@usgs.gov
Office Phone: 615-837-4760
ORCID: 0000-0001-9845-7831

Supervisor: Rodney R Knight
thumbnail
To better understand the influence of human activities and natural processes on surface-water quality, the U.S. Geological Survey (USGS) developed the SPARROW (SPAtially Referenced Regressions On Watershed attributes) (Schwarz and others, 2006; Alexander and others, 2008) model. The framework is used to relate water-quality monitoring data to sources and watershed characteristics that affect the fate and transport of constituents to receiving surface-water bodies. The core of the model consists of using a nonlinear-regression equation to describe the non-conservative transport of contaminants from point and nonpoint sources on land to rivers, lakes and estuaries through the stream and river network. In North Carolina,...
thumbnail
This metadata record describes mean seasonal time-step estimates of daily streamflow and daily baseflow, and total and baseflow estimates of loads of total nitrogen, total phosphorus, and total suspended solids at surface-water stations in the southeastern United States for the period 2001-14. Streamflow and load estimates described in this data release were obtained using the Fluxmaster approach described in Saad and others (2019). Saad, D.A., Schwarz, G.E., Argue, D.M., Anning, D.W., Ator, S.W., Hoos, A.B., Preston, S.D., Robertson, D.M., and Wise, D.R., 2019, Estimates of long-term mean daily streamflow and annual nutrient and suspended-sediment loads considered for use in regional SPARROW models of the conterminous...
thumbnail
The United States Geological Survey’s (USGS) SPAtially Referenced Regressions On Watershed attributes (SPARROW) model was developed to aid in the interpretation of monitoring data and simulate water-quality conditions in streams across large spatial scales. SPARROW is a hybrid empirical/process-based mass balance model that can be used to estimate the major sources and environmental factors that affect the long-term supply, transport, and fate of contaminants in streams. The spatially explicit model structure is defined by a river reach network coupled with contributing catchments. The model is calibrated by statistically relating watershed sources and transport-related properties to monitoring-based streamflow...
thumbnail
To better understand the influence of human activities and natural processes on surface-water quality, the U.S. Geological Survey (USGS) developed the SPARROW (SPAtially Referenced Regressions On Watershed attributes) (Schwarz and others, 2006; Alexander and others, 2008) model. The framework is used to relate water-quality monitoring data to sources and watershed characteristics that affect the fate and transport of constituents to receiving surface-water bodies. The core of the model consists of using a nonlinear-regression equation to describe the non-conservative transport of contaminants from point and nonpoint sources on land to rivers, lakes and estuaries through the stream and river network. In North Carolina,...
thumbnail
Daily streamflow discharge data from 139 streamgages located on tributaries and streams flowing to the Gulf of Mexico were used to calculate mean monthly, mean seasonal, and decile values. Streamgages used to calculate trends required a minimum of 65 years of continuous daily streamflow data. These values were used to analyze trends in streamflow using the Mann-Kendall trend test in the R package entitled “Trends” and a new methodology created by Robert M. Hirsch known as a “Quantile-Kendall” plot. Data were analyzed based on water year using the Mann-Kendall trend test and by climate year using the Quantile-Kendall methodology to: (1) identify regions which are statistically similar for estimating streamflow characteristics;...
View more...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.