Skip to main content

Person

Rebecca M Kreiling

Research Ecologist

Upper Midwest Environmental Sciences Center

Email: rkreiling@usgs.gov
Office Phone: 608-781-6346
Fax: 608-783-6066
ORCID: 0000-0002-9295-4156

Location
UMESC - Laboratory/Office - #1
2630 Fanta Reed Road
La Crosse , WI 54603
US

Supervisor: Christopher Churchill
thumbnail
The Maumee River transports huge loads of nitrogen (N) and phosphorus (P) to Lake Erie. The increased concentrations of N and P are causing eutrophication of the lake, creating hypoxic zones, and contributing to phytoplankton blooms. It is hypothesized that the P loads are a major contributor to harmful algal blooms that occur in the western basin of Lake Erie, particularly in summer. The Maumee River has been identified by the United States Environmental Protection Agency as a priority watershed where action needs to be taken to reduce nutrient loads. This study quantified rates of biogeochemical processes affecting downstream flux of N and P by 1) measuring indices of potential sediment P retention and 2) measuring...
thumbnail
The Fox River transports elevated loads of nitrogen and phosphorus to Lake Michigan. The increased concentration of N and P causes eutrophication of the lake, creating hypoxic zones and damaging the lake ecosystem.To decrease loading, best management practices (BMPs) have been implemented in the uplands of the basin. Little work has been done, however, to reduce nutrient concentrations in the river. Rivers are capable of removing nutrients through biotic uptake and sediment burial and are able to remove N through denitrification. Identifying and managing these locations of increased nutrient cycling known as “hot spots” may be another mechanism for nutrient mitigation.Our objective was to identify hot spots of N...
thumbnail
Twenty-eight sites that consisted of either predominantly agricultural land in the watershed, predominantly agricultural land in the watershed with natural land cover in the riparian zone, or predominantly natural land cover in the watershed were sampled three times during the growing season.
The code included here was used to model land use and land management actions on sediment nutrient dynamics in the Fox River Basin (near Green Bay, Lake Michigan).
thumbnail
The Maquoketa River carries some of the highest sediment and nutrient loads in the Upper Mississippi River, contributing to eutrophication and hypoxic conditions in the Mississippi River and Gulf of Mexico. Floodplains provide the ability to remove and sequester, sediments, nitrogen, phosphorus, and carbon; however effectiveness of floodplains is limited by the extent and connection of the floodplain to the river. The confluence of the Maquoketa and Mississippi Rivers presents a unique study location because the delta at the confluence is heavily managed by a State-Federal-NGO partnership that has already taken action focusing on evaluating the impact of increased connectivity on numerous ecosystem services, including...
View more...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.