Skip to main content
USGS - science for a changing world

Person

Jill R Bourque

Biologist

Southeast Ecological Science Center

Email: jbourque@usgs.gov
Office Phone: 352-264-3527
Fax: 352-378-4956
ORCID: 0000-0003-3809-2601

Location
WARC - GVL - South Modular
7920 NW 71St Street
Gainesville , FL 32653
US

Supervisor: Amanda W Demopoulos
thumbnail
Deep-sea corals can create a highly complex, three-dimensional structure that facilitates sediment accumulation and influences adjacent sediment environments through altered hydrodynamic regimes. Infaunal communities adjacent to different coral types, including reef-building scleractinian corals and individual colonies of octocorals, are known to differ from background non-coral soft-sediment communities, often exhibiting higher macrofaunal densities and distinct community structure. However, the coral types have different morphologies, which may modify the adjacent sediment communities in discrete ways. Here we address two main questions: 1) how infaunal communities adjacent to deep-sea corals and their associated...
thumbnail
Chemosynthetic environments support distinct benthic communities capable of utilizing reduced chemical compounds for nutrition. Hundreds of methane seeps have been documented along the U.S. Atlantic margin (USAM), and detailed investigations at a few seeps have revealed distinct environments containing mussels, microbial mats, authigenic carbonates, and soft sediments. The dominant mussel Bathymodiolus childressi contains methanotrophic endosymbionts but is also capable of filter feeding. We used SIA (δ13C, δ 5N, and δ34S) and an isotope mixing model (MixSIAR) to estimate resource contribution to B. childressi and characterize food webs at two seep sites (Baltimore Seep: 400 m and Norfolk Seep: 1500 m depths) along...
thumbnail
Chemosynthetic ecosystems in the Gulf of Mexico (GOM) support dense communities of seep megafaunal invertebrates that rely on endosymbiotic bacteria for nutrition. Distinct infaunal communities are associated with the biogenic habitats created by seep biota, where habitat heterogeneity and sediment geochemistry influence local macrofaunal community structure. Here we examine the variance in infaunal communities in the GOM with respect to depth, sediment geochemistry parameters, and distance to known seep habitats. Habitats were mapped based on ROV video of the seafloor. Samples were collected from three sites (AC601, GC852, and AT340) via box core in 2007 and processed for macrofauna and environmental characteristics....
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.