Skip to main content
USGS - science for a changing world

Person

Daniel Schlaepfer

thumbnail
Covering 120 million acres across 14 western states and 3 Canadian provinces, sagebrush provides critical habitat for species such as pronghorn, mule deer, and sage-grouse – a species of conservation concern. The future of these and other species is closely tied to the future of sagebrush. Yet this important ecosystem has already been affected by fire, invasive species, land use conversion, and now, climate change. In the western U.S., temperatures are rising and precipitation patterns are changing. However, there is currently a limited ability to anticipate the impacts of climate change on sagebrush. Current methods suffer from a range of weakness that limits the reliability of results. In fact, the current uncertainty...
thumbnail
Water cycling and availability exert dominant control over ecological processes and the sustainability of ecosystem services in water - limited ecosystems. Consequently, dryland ecosystems have the potential to be dramatically impacted by hydrologic alterations emerging from global change, notably increasing temperature and altered precipitation patterns. In addition, the possibility of directly manipulating global solar radiation by augmenting stratospheric SO2 is receiving increasing attention as CO2 emissions continue to increase - these manipulations are anticipated to decrease precipitation, a change that may be as influential as temperature increases in dryland ecosystems. We propose to integrate a proven...
Categories: Project
thumbnail
Drylands cover 40% of the global terrestrial surface and provide important ecosystem services. While drylands as a whole are expected to increase in extent and aridity in coming decades, temperature and precipitation forecasts vary by latitude and geographic region suggesting different trajectories for tropical, subtropical, and temperate drylands. Uncertainty in the future of tropical and subtropical drylands is well constrained, whereas soil moisture and ecological droughts, which drive vegetation productivity and composition, remain poorly understood in temperate drylands. Here we show that, over the twenty first century, temperate drylands may contract by a third, primarily converting to subtropical drylands,...
Categories: Publication; Types: Citation
View more...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.