Skip to main content

Person

Gregory J McCabe

thumbnail
This metadata record describes monthly input and output data covering the period 1900-2015 for a water-balance model described in McCabe and Wolock (2011). The input datasets are precipitation (PPT) and air temperature (TAV) from the PRISM group at Oregon State University. The model outputs include estimated potential evapotranspiration (PET), actual evapotranspiration (AET), runoff (RUN) (streamflow per unit area), soil moisture storage (STO), and snowfall (SNO). The datasets are arranged in tables of monthly total or average values measured in millimeters or degrees C and then multiplied by 100. The data are indexed by the identifier PRISMID, which refers to an ASCII raster of cells in an associated file named...
Abstract (from http://onlinelibrary.wiley.com/doi/10.1002/2015GL067613/full): This empirical study examines the influence of precipitation, temperature, and antecedent soil moisture on upper Colorado River basin (UCRB) water year streamflow over the past century. While cool season precipitation explains most of the variability in annual flows, temperature appears to be highly influential under certain conditions, with the role of antecedent fall soil moisture less clear. In both wet and dry years, when flow is substantially different than expected given precipitation, these factors can modulate the dominant precipitation influence on streamflow. Different combinations of temperature, precipitation, and soil moisture...
thumbnail
The climate of the North Central U.S. is driven by a combination of factors, including atmospheric circulation patterns, the region’s complex topography which extends from the High Rockies to the Great Plains, and variations in hydrology. Together, these factors determine the sustainability of the region’s ecosystems and the services that they provide communities. In order to understand the vulnerability of the region’s ecosystems to change, it is necessary to have reliable projections of future climate conditions. To address this need, researchers first examined past and present variations in climate and assessed the ability of climate models to effectively project future climate conditions for the region. Second,...
Climate displays an often-unrecognized order in both time and space. What may appear as a random sequence of precipitation at a point or within a watershed is actually the local expression of a broad integrated system of weather processes that are active on scales of 100’s to 1000’s of kilometers. Only when climate forcings and hydrologic responses are considered from a regional perspective does the order become evident. Understanding these regional processes provides a sound basis for national, regional, and local hydrologic analysis, resource management, and hazard assessment/mitigation. The objectives of this research are (1) to identify and quantify relations between large-scale atmospheric circulation and sea-surface...
Abstract (from http://www.sciencedirect.com/science/article/pii/S0022169414010087): Monthly calibrated values of the Hamon PET coefficient ( C) are determined for 109,951 hydrologic response units (HRUs) across the conterminous United States (U.S.). The calibrated coefficient values are determined by matching calculated mean monthly Hamon PET to mean monthly free-water surface evaporation. For most locations and months the calibrated coefficients are larger than the standard value reported by Hamon. The largest changes in the coefficients were for the late winter/early spring and fall months, whereas the smallest changes were for the summer months. Comparisons of PET computed using the standard value of C and computed...
View more...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.