Skip to main content

Person

Courtney A Creamer

Research Soil Scientist

Geology, Minerals, Energy, and Geophysics Science Center

Email: ccreamer@usgs.gov
Office Phone: 650-329-5449
ORCID: 0000-0001-8270-9387

Supervisor: Andrea L Foster
The U.S. Geological Survey (USGS) Soil Sample Archive is a database of information describing soil and sediment samples collected in support of USGS science. Samples in the archive have been registered with International Generic Sample Numbers, relabeled with bar-coded sample labels, and repacked in containers for long-term preservation. Details of sample collection location, collection date, associated datasets, mass of remaining sample, storage locations, and other relevant information are tabulated here so that interested parties may identify associated datasets and search, sort, and gain access to archived samples.
thumbnail
These datasets are from an incubation experiment with a combination of two minerals (feldspar or amorphous aluminum hydroxide), one living species of bacteria (Escherichia coli), and one added form of C (Arthrobacter crystallopoietes necromass). We characterized the sorptive properties of the minerals with batch sorption experiments using four low molecular weight C substrates (glucose, oxalic acid, glutamic acid, p-hydroxybenzoic acid): this data is provided in the SterileSorptionData file. We then conducted a 3-wk long incubation in serum vials or imaging chambers. In both incubations, feldspar (200 mg) or amorphous aluminum hydroxide (100 mg) was given 1 of 4 different treatments: (1) a water control with autoclaved...
thumbnail
Re-vegetation of mining wastes is difficult due to the inhospitable conditions for plant growth. Our aim was to determine whether the combined addition of municipal waste compost and plant growth promoting endophytes (i.e., microorganisms that live within plants) could improve plant growth, organic matter accumulation, and phytostabilization of metal contaminants across multiple types of hard rock mine waste. We grew a widespread perennial grass, Bouteloua curtipendula, for 45 days in tailings (Ag-Pb-Au mine) and waste rock (porphyry copper mine) sourced from southeastern Arizona, USA. We quantified organic matter accumulation, microbial biomass, plant growth rates, biomass yields, plant metal concentrations, and...
thumbnail
The Science Issue and Relevance: Coastal wetlands are some of the most productive and valuable habitats in the world. Louisiana contains 40% of the United States’ coastal wetlands, which provide critical habitat for waterfowl and fisheries, as well as many other benefits, such as storm surge protection for coastal communities. In terms of ecosystem services, biological resource production, and infrastructure investments, the value of Louisiana’s coastal wetlands exceeds $100 billion. Thus, stakeholders are gravely concerned about sea-level rise which is causing coastal marsh habitat to convert to open water and resulting in the highest rates of wetland loss in the world, with nearly 1.2 million acres lost since...
thumbnail
The legacy of mining exploration and operations can remain for decades to centuries if not treated, posing risks to human and animal health due to fugitive dispersal of metal(loid) laden dust and water. The use of endemic plants is key to the success of phytostabilization because endemics are adapted to the conditions prevailing in local mine sites. To this end, we evaluated the phytostabilization potential of endemic plant populations growing at two unmined mineralized sites and on metallic wastes at two historic mine operations and two sites un-impacted by mining operations within the Harshaw Mining District in southern Arizona. Included in this dataset are the physical (pH, Electrical Conductivity, total carbon...
View more...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.