Skip to main content

Person

William DeLuca

Climate change is affecting species and ecosystems across the Northeast and Midwest U.S. Natural resource managers looking to maintain ecological function and species persistence have requested information to improve resource management in the face of climate change. Leveraging the research that has already been supported by the Northeast Climate Adaptation Science Center and its partners, this project used the latest modeling techniques combined with robust field data to examine the impact of specific climate variables, land use change, and species interactions on the future distribution and abundance of species of conservation concern. An interdisciplinary team worked to understand the mechanisms that are driving...
Abstract (from Springer Link): Species-specific models of landscape capability (LC) can inform landscape conservation design. Landscape capability is “the ability of the landscape to provide the environment […] and the local resources […] needed for survival and reproduction […] in sufficient quantity, quality and accessibility to meet the life history requirements of individuals and local populations.” Landscape capability incorporates species’ life histories, ecologies, and distributions to model habitat for current and future landscapes and climates as a proactive strategy for conservation planning. We tested the ability of a set of LC models to explain variation in point occupancy and abundance for seven bird...
Abstract (from Springer Link): Conservation planning is increasingly using “coarse filters” based on the idea of conserving “nature’s stage”. One such approach is based on ecosystems and the concept of ecological integrity, although myriad ways exist to measure ecological integrity. To describe our ecosystem-based index of ecological integrity (IEI) and its derivative index of ecological impact (ecoImpact), and illustrate their applications for conservation assessment and planning in the northeastern United States. We characterized the biophysical setting of the landscape at the 30 m cell resolution using a parsimonious suite of settings variables. Based on these settings variables and mapped ecosystems, we computed...
Abstract (from Science Direct): Urban development is a principal driver of landscape change affecting the integrity of ecological systems and the capacity of the landscape to support species. We developed an urban growth model (SPRAWL), evaluated it with hindcasting, and used it to simulate urban growth across the northeastern United States between 2010 and 2080 under four alternative scenarios. In the model, urban growth is constrained by demand for new development for each time step at the subregional scale. Demand is subsequently allocated to local application panes (5 km on a side within 15 km window) using a unique landscape context matching algorithm, such that the more historical development that occurred...
Landscape capability (LC) models are a spatial tool with potential applications in conservation planning. We used survey data to validate LC models as predictors of occurrence and abundance at broad and fine scales for American woodcock (Scolopax minor) and ruffed grouse (Bonasa umbellus). Landscape capability models were reliable predictors of occurrence but were less indicative of relative abundance at route (11.5–14.6 km) and point scales (0.5–1 km). As predictors of occurrence, LC models had high sensitivity (0.71–0.93) and were accurate (0.71–0.88) and precise (0.88 and 0.92 for woodcock and grouse, respectively). Models did not predict point-scale abundance independent of the ability to predict occurrence...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.