Skip to main content

Person

Benjamin H Shimizu

thumbnail
This data release contains a comma-delimited ascii file of two same-day, discrete discharge measurements made at sites along selected reaches of Waipāhoehoe Stream, Hawai'i on July 16, 2019. These discrete discharge measurements form what is commonly referred to as a “seepage run.” The intent of the seepage run is to quantify the spatial distribution of streamflow along the reach during fair-weather, low-flow conditions, generally characterized by negligible direct runoff within the reach. The measurements can be used to characterize the net seepage of water into (water gain) or out of (water loss) the stream channel between measurement sites provided that the measurements were made during stable, nonchanging flow...
thumbnail
This data release contains a comma-delimited ascii file of nine discrete discharge measurements made at sites along selected reaches of Palauhulu Stream, Maui, Hawai'i on October 19, 2021 and November 22, 2021. These discrete discharge measurements form what is commonly referred to as a “seepage run.” The intent of the seepage run is to quantify the spatial distribution of streamflow along the reach during fair-weather, low-flow conditions, generally characterized by negligible direct runoff within the reach. The measurements can be used to characterize the net seepage of water into (water gain) or out of (water loss) the stream channel between measurement sites provided that the measurements were made during stable,...
thumbnail
This data release contains a comma-delimited ascii file of three same-day, discrete discharge measurements made at sites along selected reaches of Kaunakakai Gulch, Moloka'i, Hawai'i on September 10, 2021. These discrete discharge measurements form what is commonly referred to as a “seepage run.” The intent of the seepage run is to quantify the spatial distribution of streamflow along the reach during fair-weather, low-flow conditions, generally characterized by negligible direct runoff within the reach. The measurements can be used to characterize the net seepage of water into (water gain) or out of (water loss) the stream channel between measurement sites provided that the measurements were made during stable,...
thumbnail
This data release contains a comma-delimited ascii file of eight same-day, discrete discharge measurements made at sites along selected reaches of Kawainui Stream, O'ahu, Hawai'i on September 24, 2021. These discrete discharge measurements form what is commonly referred to as a “seepage run.” The intent of the seepage run is to quantify the spatial distribution of streamflow along the reach during fair-weather, low-flow conditions, generally characterized by negligible direct runoff within the reach. The measurements can be used to characterize the net seepage of water into (water gain) or out of (water loss) the stream channel between measurement sites provided that the measurements were made during stable, nonchanging...
thumbnail
This data release contains a comma-delimited ascii file of four same-day, discrete discharge measurements made at sites along selected reaches of Honoulimalo'o Stream, Moloka'i, Hawai'i on December 1, 2020. These discrete discharge measurements form what is commonly referred to as a “seepage run.” The intent of the seepage run is to quantify the spatial distribution of streamflow along the reach during fair-weather, low-flow conditions, generally characterized by negligible direct runoff within the reach. The measurements can be used to characterize the net seepage of water into (water gain) or out of (water loss) the stream channel between measurement sites provided that the measurements were made during stable,...
View more...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.