Skip to main content

Person

Kenneth D Skinner

Hydrologist

Idaho Water Science Center

Email: kskinner@usgs.gov
Office Phone: 208-387-1343
Fax: 208-387-1372
ORCID: 0000-0003-1774-6565

Location
Boise - Bldg 1 Newell Building
230 Collins Road
Boise , ID 83702
US

Supervisor: Lauren M Zinsser
thumbnail
The U.S. Geological Survey's (USGS) SPAtially Referenced Regression On Watershed attributes (SPARROW) model was used to aid in the interpretation of monitoring data and simulate streamflow and water-quality conditions in streams across the Pacific Region of the Unites States. SPARROW is a hybrid empirical/process-based mass balance model that can be used to estimate the major sources and environmental factors that affect the long-term supply, transport, and fate of contaminants in streams. The spatially explicit model structure is defined by a river reach network coupled with contributing catchments. The model is calibrated by statistically relating watershed sources and transport-related properties to monitoring-based...
thumbnail
Previous work by the U.S. Geological Survey (USGS) developed models to estimate the amount of water that is withdrawn and consumed by thermoelectric power plants (Diehl and others, 2013; Diehl and Harris, 2014; Harris and Diehl, 2019 [full citations listed in srcinfo of the metadata file]). This data release presents a historical reanalysis of thermoelectric water use from 2008 to 2020 and includes monthly and annual water withdrawal and consumption estimates, thermodynamically plausible ranges of minimum and maximum withdrawal and consumption estimates, and associated information for 1,360 water-using, utility-scale thermoelectric power plants in the United States. The term “reanalysis” refers to the process of...
thumbnail
The U.S. Geological Survey's (USGS) SPAtially Referenced Regression On Watershed attributes (SPARROW) model was used to aid in the interpretation of monitoring data and simulate streamflow and water-quality conditions in streams across the Northeast Region of the United States. SPARROW is a hybrid empirical/process-based mass balance model that can be used to estimate the major sources and environmental factors that affect the long-term supply, transport, and fate of contaminants in streams. The spatially explicit model structure is defined by a river reach network coupled with contributing catchments. The model is calibrated by statistically relating watershed sources and transport-related properties to monitoring-based...
thumbnail
The U.S. Geological Survey (USGS) developed a spatial water-quality model called SPAtially Referenced Regressions On Watershed attributes (SPARROW) to estimate the major sources and environmental factors that affect the long-term supply, transport, and fate of contaminants in the Nation’s streams. The SPARROW model relates in-stream water-quality data to spatially referenced characteristics of watersheds, including contaminant sources and factors influencing terrestrial and aquatic transport. Based on SPARROW modeling, one of the main nutrient sources to streams is point-source facilities such as municipal waste-water treatment plants that discharge directly to streams. This dataset was developed to assist with...
Categories: Data; Tags: Alabama, Arizona, Arkansas, California, Colorado, All tags...
thumbnail
The U.S. Geological Survey’s (USGS) SPAtially Referenced Regression On Watershed attributes (SPARROW) model was used to aid in the interpretation of monitoring data and simulate streamflow and water-quality conditions in streams across the Midwest Region of the United States. SPARROW is a hybrid empirical/process-based mass balance model that can be used to estimate the major sources and environmental factors that affect the long-term supply, transport, and fate of contaminants in streams. The spatially explicit model structure is defined by a river reach network coupled with contributing catchments. The model is calibrated by statistically relating watershed sources and transport-related properties to monitoring-based...
View more...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.