Skip to main content

A.N. Halliday

thumbnail
Hydrogenetic ferromanganese (Fe-Mn) crusts from the western North Atlantic record variations in the Nd and Pb isotopic composition of Cenozoic deep water preserved during their growth. The timing and cause of the most striking change have been the subject of debate. Some have proposed that the shift took place after 4 Ma in response to the closure of the Panama gateway. Others have argued that the major change in isotope composition occurred as early as 8 Ma. This study presents high-resolution Nd isotope records for crusts previously dated using 10Be/9Be chronology. These data confirm that the shifts in Nd occurred after 4 Ma, consistent with a likely relationship with the closure of the Central American Isthmus...
thumbnail
Isotopic and major and trace element analysis of nine samples of eruptive products spanning the history of the Mt. St. Helens volcano suggest three different episodes; (1) 40,000-2500 years ago: eruptions of dacite with ??{lunate}Nd = +5, ??{lunate}Sr = -10, variable ??18O, 206Pb/204Pb ??? 18.76, Ca/Sr ??? 60, Rb/Ba ??? 0.1, La/Yb ??? 18, (2) 2500-1000 years ago: eruptions of basalt, andesite and dacite with ??{lunate}Nd = +4 to +8, ??{lunate}Sr = -7 to -22, variable ??18O (thought to represent melting of differing mantle-crust reservoirs), 206Pb/204Pb = 18.81-18.87, variable Ca/Sr, Rb/Ba, La/Yb and high Zr, (3) 1000 years ago to present day: eruptions of andesite and dacite with ??{lunate}Nd = +6, ??{lunate}Sr...
thumbnail
Three ferromanganese crusts from the northeast, northwest and central Atlantic were re-dated using osmium (Os) isotope stratigraphy and yield ages from middle Miocene to the present. The three Os isotope records do not show evidence for growth hiatuses. The reconstructed Os isotope-based growth rates for the sections older than 10??Ma are higher than those determined previously by the combined beryllium isotope (10Be/9Be) and cobalt (Co) constant-flux methods, which results in a decrease in the maximum age of each crust. This re-dating does not lead to significant changes to the interpretation of previously determined radiogenic isotope neodymium, lead (Nd, Pb) time series because the variability of these isotopes...
thumbnail
Hydrogenetic ferromanganese oxyhydroxide crusts (Fe-Mn crusts) precipitate out of cold ambient ocean water onto hard-rock surfaces (seamounts, plateaus, ridges) at water depths of about 400 to 4000 m throughout the ocean basins. The slow-growing (mm/Ma) Fe-Mn crusts concentrate most elements above their mean concentration in the Earth's crust. Tellurium is enriched more than any other element (up to about 50,000 times) relative to its Earth's crustal mean of about 1 ppb, compared with 250 times for the next most enriched element. We analyzed the Te contents for a suite of 105 bulk hydrogenetic crusts and 140 individual crust layers from the global ocean. For comparison, we analyzed 10 hydrothermal stratabound Mn-oxide...
thumbnail
The application of radiogenic isotopes to the study of Cenozoic circulation patterns in the South Pacific Ocean has been hampered by the fact that records from only equatorial Pacific deep water have been available. We present new Pb and Nd isotope time series for two ferromanganese crusts that grew from equatorial Pacific bottom water (D137-01, "Nova," 7219 m water depth) and southwest Pacific deep water (63KD, "Tasman," 1700 m water depth). The crusts were dated using 10Be/9Be ratios combined with constant Co-flux dating and yield time series for the past 38 and 23 Myr, respectively. The surface Nd and Pb isotope distributions are consistent with the present-day circulation pattern, and therefore the new records...
Categories: Publication; Types: Citation; Tags: Paleoceanography
View more...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.