Skip to main content

Allen, Phil S

After-ripening, the loss of dormancy under dry conditions, is associated with a decrease in mean base water potential for germination of Bromus tectorum L. seeds. After-ripening rate is a linear function of temperature above a base temperature, so that dormancy loss can be quantified using a thermal after-ripening time (TAR) model. To incorporate storage water potential into TAR, we created a hydrothermal after-ripening time (HTAR) model. Seeds from two B. tectorum populations were stored under controlled temperatures (20 or 30 �C) and water potentials (?400 to ?40 MPa). Subsamples were periodically removed from each storage treatment and incubated at 15 or 25 �C to determine germination time courses. Dormancy status...
Bromus tectorum is a winter annual grass that has become extensively naturalized in western North America. Its seeds are usually at least conditionally dormant at dispersal and lose dormancy through dry afterripening. Germination response to temperature for recently harvested seeds and rate of change in germination response during afterripening were examined for collections from 21 western North American populations representing a wide array of habitats. Analysis of variance showed highly significant among-population differences in germination response variables. Principal components analysis of 20 germination variables revealed groups of populations that could be characterized by distinct response syndromes. Degree...
Categories: Publication; Types: Citation, Journal Citation; Tags: Oikos
A principal goal of seed germination modelling for wild species is to predict germination timing under fluctuating field conditions. We coupled our previously developed hydrothermal time, thermal and hydrothermal afterripening time, and hydration?dehydration models for dormancy loss and germination with field seed zone temperature and water potential measurements from early summer through autumn to develop predictions of germination timing for Bromus tectorum at a semi-arid site in north-central Utah, USA. Model predictions were tested with a validation dataset based on concomitant seed retrieval experiments in 2 years. Predictions were generally in agreement with observed field germination time courses, even though...
Bromus tectorum L. is an invasive winter annual grass with seeds that lose dormancy through the process of dry after-ripening. This paper proposes a model for after-ripening of B. tectorum seeds based on the concept of hydrothermal time. Seed germination time course curves are modelled using five parameters: a hydrothermal time constant, the fraction of viable seeds in the population, base temperature, mean base water potential and the standard deviation of base water potentials in the population. It is considered that only mean base water potential varies as a function of storage duration and incubation temperature following after-ripening. All other parameters are held constant throughout after-ripening and at...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.