Skip to main content

Anderson, Suzanne P

The spatial and temporal changes in element and mineral concentrations in regolith profiles in a chronosequence developed on marine terraces along coastal California are interpreted in terms of chemical weathering rates and processes. In regoliths up to 15 m deep and 226 kyrs old, quartz-normalized mass transfer coefficients indicate non-stoichiometric preferential release of Sr > Ca > Na from plagioclase along with lesser amounts of K, Rb and Ba derived from K-feldspar. Smectite weathering results in the loss of Mg and concurrent incorporation of Al and Fe into secondary kaolinite and Fe-oxides in shallow argillic horizons. Elemental losses from weathering of the Santa Cruz terraces fall within the range of those...
Categories: Publication; Types: Citation
At the Earth's surface, a complex suite of chemical, biological, and physical processes combines to create the engine that transforms bedrock into soil (Figure 1). Earth's weathering engine provides nutrients to nourish ecosystems and human society mediates the transport of toxic components within the biosphere, creates water flow paths that carve and weaken bedrock, and contributes to the evolution of landscapes at all temporal and spatial scales. At the longest time scales, the weathering engine sequesters CO2, thereby influencing long-term climate change.Despite the importance of soil, our knowledge of the rate of soil formation is limited because the weathering zone forms a complex, ever-changing interface,...
Chemical weathering both shapes surface environments through formation of the soil mantle and affects global geochemical cycles such as the carbon cycle. The global and local impacts of weathering processes and of the chemical weathering history of a landscape flavor the questions at the active research front in the field of chemical weathering. Questions of scale, both temporal and spatial, continually emerge. Weathering processes act on mineral surfaces, yet often weathering is studied at soil column or watershed scales. Weathering rates may be determined in laboratory experiments conducted over short time periods, or from analysis of a soil profile formed over geologic time. Out of these disparate approaches...
Categories: Publication; Types: Citation
The spatial and temporal changes in element and mineral concentrations in regolith profiles in a chronosequence developed on marine terraces along coastal California are interpreted in terms of chemical weathering rates and processes. In regoliths up to 15 m deep and 226 kyrs old, quartz-normalized mass transfer coefficients indicate non-stoichiometric preferential release of Sr > Ca > Na from plagioclase along with lesser amounts of K, Rb and Ba derived from K-feldspar. Smectite weathering results in the loss of Mg and concurrent incorporation of Al and Fe into secondary kaolinite and Fe-oxides in shallow argillic horizons. Elemental losses from weathering of the Santa Cruz terraces fall within the range of those...
Categories: Publication; Types: Citation
The spatial and temporal changes in element and mineral concentrations in regolith profiles in a chronosequence developed on marine terraces along coastal California are interpreted in terms of chemical weathering rates and processes. In regoliths up to 15 m deep and 226 kyrs old, quartz-normalized mass transfer coefficients indicate non-stoichiometric preferential release of Sr > Ca > Na from plagioclase along with lesser amounts of K, Rb and Ba derived from K-feldspar. Smectite weathering results in the loss of Mg and concurrent incorporation of Al and Fe into secondary kaolinite and Fe-oxides in shallow argillic horizons. Elemental losses from weathering of the Santa Cruz terraces fall within the range of those...
Categories: Publication; Types: Citation
View more...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.