Skip to main content

Brian Joyce

The western coastline of Alaska spans over 10,000 km of diverse topography ranging from low lying tundra in the north to sharp volcanic relief in the south. Included in this range are areas highly susceptible to powerful storms which can cause coastal flooding, erosion and have many other negative effects on the environment and commercial efforts in the region. In order to better understand the multi-scale and interactive physics of the deep ocean,continental shelf, near shore, and coast, a large unstructured domain hydrodynamic model is being developed using the finite element, free surface circulation code ADCIRC.This model is a high resolution, accurate, and robust computational model of Alaska’s coastal environment...
This dataset consists of raster geotiff outputs of 30-year average annual land use and land cover transition probabilities for the California Central Valley modeled for the period 2011-2101 across 5 future scenarios. The full methods and results of this research are described in detail in “Integrated modeling of climate, land use, and water availability scenarios and their impacts on managed wetland habitat: A case study from California’s Central Valley” (2021). Land-use and land-cover change for California's Central Valley were modeled using the LUCAS model and five different scenarios were simulated from 2011 to 2101 across the entirety of the valley. The five future scenario projections originated from the four...
This spreadsheet dataset (.csv file) contains annual land-use and land cover area in square kilometers (km2) by scenario, timestep, WEAP hydrologic zone, and 4 sub-regions within the broader California Central Valley, modeled using the LUCAS ST-Sim for the period 2011-2101 across 5 future scenarios. Four of the scenarios were developed as part of the Central Valley Landscape Conservation Project. The 4 original scenarios include a Bad-Business-As-Usual (BBAU; high water, poor management), California Dreamin’ (DREAM; high water availability, good management), Central Valley Dustbowl (DUST; low water availability, poor management), and Everyone Equally Miserable (EEM; low water availability, good management). These...
This dataset consists of raster geotiff and tabular outputs of annual map projections of land use and land cover for the California Central Valley for the period 2011-2101 across 5 future scenarios. Four of the scenarios were developed as part of the Central Valley Landscape Conservation Project. The 4 original scenarios include a Bad-Business-As-Usual (BBAU; high water, poor management), California Dreamin’ (DREAM; high water, good management), Central Valley Dustbowl (DUST; low water, poor management), and Everyone Equally Miserable (EEM; low water, good management). These scenarios represent alternative plausible futures, capturing a range of climate variability, land management activities, and habitat restoration...
An integrated high resolution tide and storm surge model has been developedfor all of coastal Alaska. The model uses the ADCIRC basin-to-channelscale unstructured grid circulation code. Tidal forcing from global tidal modelsand meteorological forcing from the Climate Forecast System Reanalysisare used. The model’s tidal solution has been validated at 121 shelf andnearshore stations. The model’s skill has been investigated for summer, falland winter storms. Sea ice has been incorporated through a parameterizedwind drag coefficient which modifies the air-sea drag under ice coverage.Three large storms with distinctly different ice coverages were chosen to exhibitthe effect of sea ice on the resulting storm surge. The...
Categories: Data, Publication; Types: Citation; Tags: Academics & scientific researchers, COASTAL AREAS, COASTAL AREAS, COASTAL PROCESSES, COASTAL PROCESSES, All tags...
View more...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.