Skip to main content
USGS - science for a changing world

Bruce Jaffe

thumbnail
There is a need for a clear procedure to identify tsunami deposits in the geologic record. Data from published studies documenting recent tsunami deposits provide a means of developing identification criteria based on the sedimentary characteristics of unequivocal tsunami deposits. Recent tsunami deposits have many sedimentary characteristics in common. All had sharp or erosional basal contacts. Sand was typically deposited in sheets that blanketed pre-existing topography and generally thinned landward. Deposit thickness was dependent on local topography; deposits were thicker in swales or local depressions and thinner on ridges or topographic highs. Deposits typically had 1-4 layers. Normal grading was common and...
Categories: Publication; Types: Citation; Tags: Open-File Report
thumbnail
Sediment deposition and erosion in South San Francisco Bay from 1956 to 2005 was studied by comparing bathymetric surveys made in 1956, 1983, and 2005. From 1956 to 1983, the region was erosional. In contrast, from 1983 to 2005, the region was depositional. Analysis of subregions defined by depth, morphology and location revealed similarities in behavior during both the erosional and depositional periods. During the entire period of the study, there was net erosion in the shallows (<1 m depth) on the eastern shore of the bay north of the Dumbarton Bridge and net deposition in the region south of Dumbarton Bridge. The rates, however, reflected the sediment regime of each time period. Erosional areas were less erosional...
Categories: Publication; Types: Citation; Tags: Open-File Report
thumbnail
A statewide assessment for geological evidence of tsunamis, primarily from distant-source events, found tsunami deposits at several locations, though evidence was absent at most locations evaluated. Several historical distant-source tsunamis, including the 1946 Aleutian, 1960 Chile, and 1964 Alaska events, caused inundation along portions of the northern and central California coast. Recent numerical tsunami modeling results identify the eastern Aleutian Islands subduction zone as the “worstcase” distant-source region, with the potential for causing tsunami runups of 7–10 m in northern and central California and 3–4 m in southern California. These model results, along with a review of historical topographic maps...
Categories: Publication; Types: Citation; Tags: Open-File Report
thumbnail
In February 1995, a 1,600-foot stretch of popular beach at Sleeping Bear Dunes National Lakeshore suddenly slid into the waters of northeastern Lake Michigan. The National Park Service (NPS) immediately requested the assistance of the U.S. Geological Survey (USGS) in evaluating the hazard at the lakeshore. To protect the public, USGS and NPS scientists are conducting studies that will help predict when the landslide-prone area will move again.
Categories: Publication; Types: Citation; Tags: Fact Sheet
thumbnail
Understanding patterns of historical erosion and deposition in San Francisco Bay is crucial in managing such issues as locating deposits of sediment-associated contaminants, and the restoration of wetland areas. These problems were addressed by quantitatively examining historical hydrographic surveys. The data from five hydrographic surveys, made from 1867 to 1990, were analyzed using surface modeling software to determine long-term changes in the sediment system of Suisun Bay and surrounding areas. A surface grid displaying the bathymetry was created for each survey period, and the bathymetric change between survey periods was computed by differencing these grids. Patterns and volumes of erosion and deposition,...
Categories: Publication; Types: Citation; Tags: Open-File Report
View more...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.