Skip to main content

Bruce K. Wylie

thumbnail
We performed an in-depth literature survey to identify the most popular data mining approaches that have been applied for raster mapping of ecological parameters through the use of Geographic Information Systems (GIS) and remotely sensed data. Popular data mining approaches included decision trees or “data mining” trees which consist of regression and classification trees, random forests, neural networks, and support vector machines. The advantages of each data mining approach as well as approaches to avoid overfitting are subsequently discussed. We also provide suggestions and examples for the mapping of problematic variables or classes, future or historical projections, and avoidance of model bias. Finally, we...
thumbnail
Net CO2 exchange data of legume crops at 17 flux tower sites in North America and three sites in Europe representing 29 site-years of measurements were partitioned into gross photosynthesis and ecosystem respiration by using the nonrectangular hyperbolic light-response function method. The analyses produced net CO2 exchange data and new ecosystem-scale ecophysiological parameter estimates for legume crops determined at diurnal and weekly time steps. Dynamics and annual totals of gross photosynthesis, ecosystem respiration, and net ecosystem production were calculated by gap filling with multivariate nonlinear regression. Comparison with the data from grain crops obtained with the same method demonstrated that CO2...
Categories: Publication; Types: Citation; Tags: Agronomy Journal
thumbnail
Aim  Extrapolation of tower CO2 fluxes will be greatly facilitated if robust relationships between flux components and remotely sensed factors are established. Long-term measurements at five Northern Great Plains locations were used to obtain relationships between CO2fluxes and photosynthetically active radiation (Q), other on-site factors, and Normalized Difference Vegetation Index (NDVI) from the SPOT VEGETATION data set. Location  CO2 flux data from the following stations and years were analysed: Lethbridge, Alberta 1998–2001; Fort Peck, MT 2000, 2002; Miles City, MT 2000–01; Mandan, ND 1999–2001; and Cheyenne, WY 1997–98. Results  Analyses based on light-response functions allowed partitioning net CO2 flux...
thumbnail
Crop cover maps have become widely used in a range of research applications. Multiple crop cover maps have been developed to suite particular research interests. The National Agricultural Statistics Service (NASS) Cropland Data Layers (CDL) are a series of commonly used crop cover maps for the conterminous United States (CONUS) that span from 2008-2013. In this investigation we wanted to expand the temporal coverage of the NASS CDL archive back to 2000 by creating yearly NASS CDL-like crop cover maps derived from a classification tree model algorithm. We used over 11 million crop sample records to train a classification tree algorithm and to develop a crop classification model (CCM). The model was used to create...
thumbnail
Crop cover maps have become widely used in a range of research applications. Multiple crop cover maps have been developed to suite particular research interests. The National Agricultural Statistics Service (NASS) Cropland Data Layers (CDL) are a series of commonly used crop cover maps for the conterminous United States (CONUS) that span from 2008-2013. In this investigation we wanted to expand the temporal coverage of the NASS CDL archive back to 2000 by creating yearly NASS CDL-like crop cover maps derived from a classification tree model algorithm. We used over 11 million crop sample records to train a classification tree algorithm and to develop a crop classification model (CCM). The model was used to create...
View more...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.