Skip to main content

Charles L. Brown

thumbnail
We used a MiniROVER MK II remotely operated vehicle (ROV) to collect ground-truth information on fish and their habitat in the Great Lakes that have traditionally been collected by divers, or with static cameras, or submersibles. The ROV, powered by 4 thrusters and controlled by the pilot at the surface, was portable and efficient to operate throughout the Great Lakes in 1987, and collected a total of 30 h of video data recorded for later analysis. We collected 50% more substrate information per unit of effort with the ROV than with static cameras. Fish behavior ranged from no avoidance reaction in ambient light, to erratic responses in the vehicle lights. The ROV's field of view depended on the time of day, light...
Categories: Publication; Types: Citation
thumbnail
To predict the effects of increased nutrient loading on nearshore phytoplankton populations in northern Lake Huron, we collected phytoplankton from a small, nearshore water intake at Hammond Bay four times per week from August 1973 to July 1975. Phytoplankton density, taxonomic composition, and biomass in the nearshore waters followed predictable, seasonal fluctuations during each of two 12-month periods. The density of total phytoplankton was high (450600 cells/mL) in June and low (60 to 210 cells/mL) from January to April each year. The mean annual composition of the phytoplankton assemblage by number for the study period was 33% cryptomonads, 24% diatoms, 16% chrysophytes, 16% blue-green algae, and 10% green...
thumbnail
The reestablishment of self-sustaining stocks of lake trout (Salvelinus namaycush) in the lower four Great Lakes has been substantially impeded because planted fish do not produce enough progeny that survive and reproduce. The causes for this failure are unknown, but many historical spawning sites of lake trout have been degraded by human activities and can no longer produce viable swim-up fry. In this study, we used side-scan sonar and an underwater video camera to survey, map, and evaluate the sustainability of one reef in each of the five Great Lakes for lake trout spawning and fry production. At four of the reef sites, we found good-to-excellent substrate for spawning and fry production by the shallow-water...
Categories: Publication; Types: Citation; Tags: Technical Report
thumbnail
The National Fisheries Research Center-Great Lakes of the U.S. Fish and Wildlife Service has extensively used a side scan sonar to survey and pinpoint lake trout spawning grounds in the Great Lakes. The Geographic Information System (GIS) of the National Ecology Research Center produced maps from the side scan sonar data showing the exact location of the spawning grounds; this will enable current stocking programs to be carried out at those locations. These maps show the geographic position (latitude and longitude) of both the color-coded primary substrate types and the secondary substrate types, which are denoted by overstrikes. The maps must be supplemented with a Loran-C navigation grid for field use. The maps...
Categories: Publication; Types: Citation
thumbnail
This study demonstrates the feasibility of using low-altitude aerial photography to inventory submersed macrophytes in the connecting channels of the Great Lakes. For this purpose, we obtained aerial color transparencies and collateral ground truth information about submersed vegetation at 160 stations within four study sites in the St. Clair and Detroit rivers, September 17 to October 4, 1984. Photographs were interpreted by five test subjects to determine with what accuracy they could detect beds of submersed macrophytes, and the precision of delineating the extent of such vegetation beds. The interpreters correctly determined the presence or absence of vegetation 80% of the time (range 73-86%). Differences between...
View more...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.