Skip to main content

Clague, J. J.

We reconstructed late Holocene fluctuations of Kluane Lake in Yukon Territory from variations in bulk physical properties and carbon and nitrogen elemental and isotopic abundances in nine sediment cores. Fluctuations of Kluane Lake in the past were controlled by changes in climate and glaciers, which affected inflow of Slims and Duke rivers, the two largest sources of water flowing into the lake. Kluane Lake fluctuated within a narrow range, at levels about 25 m below the present datum, from about 5000 to 1300 cal yr BP. Low lake levels during this interval are probably due to southerly drainage of Kluane Lake to the Pacific Ocean, opposite the present northerly drainage to Bering Sea. Slims River, which today is...
thumbnail
We reconstructed late Holocene fluctuations of Kluane Lake in Yukon Territory from variations in bulk physical properties and carbon and nitrogen elemental and isotopic abundances in nine sediment cores. Fluctuations of Kluane Lake in the past were controlled by changes in climate and glaciers, which affected inflow of Slims and Duke rivers, the two largest sources of water flowing into the lake. Kluane Lake fluctuated within a narrow range, at levels about 25 m below the present datum, from about 5000 to 1300 cal yr BP. Low lake levels during this interval are probably due to southerly drainage of Kluane Lake to the Pacific Ocean, opposite the present northerly drainage to Bering Sea. Slims River, which today is...
We have constructed a new digital elevation model (DEM) of the 1995 surface of Black Rapids Glacier, a surge-type glacier in the central Alaska Range, using ERS-1/-2 repeat-pass interferometry. We isolated the topographic phase from three interferograms with contrasting perpendicular baselines. Numerous phase-unwrapping errors caused by areas of poor coherence were corrected in all three interferograms, using a novel, iterative, semi-automated approach that capitalizes on the multi-baseline nature of the dataset. Comparison of our DEM with a 1949 US Geological Survey DEM and with 1973-95 ground survey data shows the gradual return of Black Rapids Glacier to a pre-surge hypsometry following a surge in 1936/37. Maximum...
We have constructed a new digital elevation model (DEM) of the 1995 surface of Black Rapids Glacier, a surge-type glacier in the central Alaska Range, using ERS-1/-2 repeat-pass interferometry. We isolated the topographic phase from three interferograms with contrasting perpendicular baselines. Numerous phase-unwrapping errors caused by areas of poor coherence were corrected in all three interferograms, using a novel, iterative, semi-automated approach that capitalizes on the multi-baseline nature of the dataset. Comparison of our DEM with a 1949 US Geological Survey DEM and with 1973-95 ground survey data shows the gradual return of Black Rapids Glacier to a pre-surge hypsometry following a surge in 1936/37. Maximum...
View more...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.