Skip to main content

David A. King

thumbnail
This data release contains data discussed in its larger work citation (Symstad et al., 2017, Climate Risk Management 17:78-91, Associated Item at right). "ClimateComparisonData.csv" contains summary metrics of six climate projections used as climate input for quantitative simulations of hydrologic and ecological responses to climate change at Wind Cave National Park (WCNP) and the same summary metrics for 38 other climate projections available at the time that these simulations were done. "HydroData.csv" contains mean annual streamflow of a stream in WCNP and mean annual hydraulic head of a subterranean lake in Wind Cave as simulated by the rainfall-response aquifer and watershed flow (RRAWFLOW) model for two climate...
thumbnail
This data set contains output from the dynamic vegetation model MC1, as modified to simulate future woody encroachment in the northern Great Plains, for 23 monthly variables, 63 yearly variables, and 31 multi-year variables. Variables include simulated plant (by growth form) and soil carbon stocks, net primary production, vegetation type, potential and actual evapotranspiration, stream flow, and fuel mass and moisture. Model output is provided for the EQ, Spinup, Historical, and Future stages of MC1 runs; future stages were run for four climate projections crossed with 10 or 11 fire X grazing X CO2 concentration scenarios for the western and eastern portions of the study area, respectively.
This data set contains output from the dynamic vegetation model MC1, as modified to simulate future woody encroachment in the northern Great Plains. Simulations were done for the historical period (1895-2005) and the future period (2006-2100). Separate simulations were done for eastern and western portions of the region, with the eastern simulations using model parameters appropriate for Juniperus virginiana as the major evergreen needle-leaf life form, and the western simulations using model parameters appropriate for Pinus ponderosa as the major evergreen needle-leaf life form. Simulations in each portion were run for two A2 emissions scenario climate projections (CSIRO, representing moderate temperature increases...
thumbnail
The dynamic global vegetation model MC1 simulates plant growth and biogeochemical cycles, vegetation type, wildfire, and their interactions. The model simulates competition between trees and grasses (including other herbaceous species), as affected by differential access to light and water, and fire-caused tree mortality (Bachelet et al., 2000; 2001). MC1 projects the dynamics of lifeforms, including evergreen and deciduous needleleaf and broadleaf trees, as well as C3 and C4 grasses. However, the model can also be parameterized for a particular dominant species of the associated lifeform. For this project we used two versions of MC1, both of which modified the standard code to improve the simulation of potential...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.