Skip to main content

David Pierce

Future changes in the number of dry days per year can either reinforce or counteract projected increases in daily precipitation intensity as the climate warms. We analyze climate model projected changes in the number of dry days using 28 coupled global climate models from the Coupled Model Intercomparison Project, version 5 (CMIP5). We find that the Mediterranean Sea region, parts of Central and South America, and western Indonesia could experience up to 30 more dry days per year by the end of this century. We illustrate how changes in the number of dry days and the precipitation intensity on precipitating days combine to produce changes in annual precipitation, and show that over much of the subtropics the change...
thumbnail
LOCA is a statistical downscaling technique that uses past history to add improved fine-scale detail to global climate models. We have used LOCA to downscale 32 global climate models from the CMIP5 archive at a 1/16th degree spatial resolution, covering North America from central Mexico through Southern Canada. The historical period is 1950-2005, and there are two future scenarios available: RCP 4.5 and RCP 8.5 over the period 2006-2100 (although some models stop in 2099). The variables currently available are daily minimum and maximum temperature, and daily precipitation. For more information visit: http://loca.ucsd.edu/
thumbnail
LOCA is a statistical downscaling technique that uses past history to add improved fine-scale detail to global climate models. We have used LOCA to downscale 32 global climate models from the CMIP5 archive at a 1/16th degree spatial resolution, covering North America from central Mexico through Southern Canada. The historical period is 1950-2005, and there are two future scenarios available: RCP 4.5 and RCP 8.5 over the period 2006-2100 (although some models stop in 2099). The variables currently available are daily minimum and maximum temperature, and daily precipitation. For more information visit: http://loca.ucsd.edu/
Abstract (from http://journals.ametsoc.org/doi/abs/10.1175/JHM-D-14-0082.1): A new technique for statistically downscaling climate model simulations of daily temperature and precipitation is introduced and demonstrated over the western United States. The localized constructed analogs (LOCA) method produces downscaled estimates suitable for hydrological simulations using a multiscale spatial matching scheme to pick appropriate analog days from observations. First, a pool of candidate observed analog days is chosen by matching the model field to be downscaled to observed days over the region that is positively correlated with the point being downscaled, which leads to a natural independence of the downscaling results...
This paper is a product from the SW CSC FY 11 project, "Climate change impacts in the Southwest: An assessment of next generation climate models for making projections and derivations". Abstract: Natural climate variability will continue to be an important aspect of future regional climate even in the midst of long-term secular changes. Consequently, the ability of climate models to simulate major natural modes of variability and their teleconnections provides important context for the interpretation and use of climate change projections. Comparisons reported here indicate that the CMIP5 generation of global climate models shows significant improvements in simulations of key Pacific climate mode and their teleconnections...
View more...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.