Skip to main content

DeRaps, M.R.

thumbnail
In July 2012, a helicopter-based crew photographed approximately 22 miles (35 km) of shoreline near Golovin, Alaska, from the Yuonglik River delta southeast to Portage Creek. During this flight 572 oblique aerial photographs were collected and spatially referenced using a Garmin Dakota 20 handheld GPS.
thumbnail
In July 2011, a helicopter-based crew photographed approximately 180 miles of shoreline along the eastern edge of Norton Sound, from Cape Denbigh to south of Unalakleet, AK. During this flight 2,180 oblique aerial photographs were collected and spatially referenced using a Garmin Dakota 20, handheld GPS. The communities of Unalakleet and Shaktoolik lie along the flight-line of this project.
thumbnail
This 1:50,000 scale geologic map describes the distribution of unconsolidated deposits, identifies local geologic hazards, and provides information about the depositional environment and basic engineering properties of common surficial-geologic materials in and around Shaktoolik, Alaska. Map units are the result of combined field observations and aerial imagery interpretation. A suite of local ground observations were collected over a two-week period in July 2011 by a helicopter-supported team of DGGS geologists and collaborators. Field investigations included soil test pits, sample collection, soil and rock description, oblique aerial photography, and documentation of landscape morphology.
thumbnail
On November 8, 2011, an extra-tropical cyclone with a low pressure of 945 millibars developed over the Bering Sea and moved northeast across the western coast of Alaska. This large storm brought high winds (gusts of up to 85 mph) to the entire region and a storm surge of approximately 3 meters to parts of Norton Sound. The storm caused extensive flooding in the lower portion of Golovin on the afternoon of November 9, 2011. A team of Alaska Division of Geological & Geophysical Surveys (DGGS) scientists visited Golovin on November 15, 2011, to document peak water levels, runup elevations, and inundation extents caused by this event. These data were combined with photographs taken by local residents during the event...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.