|
Knemidokoptic mange was first observed on two Hawai‘i ‘Amakihi (Hemignathus virens) mist netted in Manuka Natural Area Reserve (NAR) on the Island of Hawai‘i in June 2007. Microscopic examination of skin scrapings from lesions of the infested individuals revealed the scaley-leg mite, Knemidokoptes jamaicensis. Continued surveillance at Manuka NAR (2007-2009) documented a 24% (15/63) prevalence of mange among Hawai‘i ‘Amakihi distributed from coastal habitat to 1,500 m above sea level (asl). From 2012-2014, we conducted an island-wide survey of wild passerine birds from several leeward sites (Manuka NAR, Kahuku Unit of Hawai‘i Volcanoes National Park (HAVO), Pu‘u Wa‘awa‘a Forest Bird Sanctuary, and Kipahoehoe NAR)...
|
The indigenous forest birds of American Samoa are increasingly threatened by changing patterns of rainfall and temperature that are associated with climate change as well as environmental stressors associated with agricultural and urban development, invasive species, and new introductions of avian diseases and disease vectors. Long term changes in their distribution, diversity, and population sizes could have significant impacts on the ecological integrity of the islands because of their critical role as pollinators and seed dispersers. We documented diversity of vector borne parasites on Tutuila and Ta‘u Islands over a 10-year period to expand earlier observations of Plasmodium, Trypanosoma, and filarial parasites,...
|
|
We determined prevalence and altitudinal distribution of introduced avian malarial infections (Plasmodium relictum) and pox-like lesions (Avipoxvirus) in forest birds from Kīpahulu Valley, Haleakalā National Park, on the island of Maui, and we identified primary larval habitat for the mosquito vector of this disease. This intensively managed wilderness area and scientific reserve is one of the most pristine areas of native forest remaining in the state of Hawai‘i, and it will become increasingly important as a site for restoration and recovery of endangered forest birds. Overall prevalence of malarial infections in the valley was 8% (11/133) in native species and 4% (4/101) in nonnative passerines; prevalence was...
|
Abstract (from http://onlinelibrary.wiley.com/doi/10.1111/gcb.13005/abstract): Isolation of the Hawaiian archipelago produced a highly endemic and unique avifauna. Avian malaria ( Plasmodium relictum), an introduced mosquito-borne pathogen, is a primary cause of extinctions and declines of these endemic honeycreepers. Our research assesses how global climate change will affect future malaria risk and native bird populations. We used an epidemiological model to evaluate future bird–mosquito–malaria dynamics in response to alternative climate projections from the Coupled Model Intercomparison Project. Climate changes during the second half of the century accelerate malaria transmission and cause a dramatic decline...
|
View more...
|