Skip to main content

Derksen, Chris

Identifying and understanding why traits make species vulnerable to changing climatic conditions remain central problems in evolutionary and applied ecology. We used spring snow cover duration as a proxy for phenological timing of wetland ecosystems, and examined how snow cover duration during spring and during the entire snow season affected population dynamics of duck species breeding in the western boreal forest of North America, 1973-2007. We predicted that population level responses would differ among duck species, such that late-nesting species with reduced flexibility in their timing of breeding, i.e. scaup (Aythya spp.) and scoter (Melanitta spp.), would be more strongly affected by changing snow cover conditions...
thumbnail
During April 2007, a coordinated series of snow measurements were made across the Northwest Territories and Nunavut, Canada, during a 4200-km snowmobile traverse from Fairbanks, Alaska, to Baker Lake, Nunavut. While detailed, local snow measurements have been made as part of ongoing studies at tundra field sites in this region (Daring Lake and Trail Valley Creek in the Northwest Territories), systematic measurements at the regional scale have not been previously collected across this region. Consistent with observations of tundra snow in Alaska and northern Manitoba, the snow cover consisted of depth hoar and wind slab with small and ephemeral fractions of new, recent, and icy snow. The snow was shallow (less than...
Identifying and understanding why traits make species vulnerable to changing climatic conditions remain central problems in evolutionary and applied ecology. We used spring snow cover duration as a proxy for phenological timing of wetland ecosystems, and examined how snow cover duration during spring and during the entire snow season affected population dynamics of duck species breeding in the western boreal forest of North America, 1973-2007. We predicted that population level responses would differ among duck species, such that late-nesting species with reduced flexibility in their timing of breeding, i.e. scaup (Aythya spp.) and scoter (Melanitta spp.), would be more strongly affected by changing snow cover conditions...
Categories: Publication; Types: Citation; Tags: M1-Birds
thumbnail
Identifying and understanding why traits make species vulnerable to changing climatic conditions remain central problems in evolutionary and applied ecology. We used spring snow cover duration as a proxy for phenological timing of wetland ecosystems, and examined how snow cover duration during spring and during the entire snow season affected population dynamics of duck species breeding in the western boreal forest of North America, 1973-2007. We predicted that population level responses would differ among duck species, such that late-nesting species with reduced flexibility in their timing of breeding, i.e. scaup (Aythya spp.) and scoter (Melanitta spp.), would be more strongly affected by changing snow cover conditions...
Identifying and understanding why traits make species vulnerable to changing climatic conditions remain central problems in evolutionary and applied ecology. We used spring snow cover duration as a proxy for phenological timing of wetland ecosystems, and examined how snow cover duration during spring and during the entire snow season affected population dynamics of duck species breeding in the western boreal forest of North America, 1973-2007. We predicted that population level responses would differ among duck species, such that late-nesting species with reduced flexibility in their timing of breeding, i.e. scaup (Aythya spp.) and scoter (Melanitta spp.), would be more strongly affected by changing snow cover conditions...
Categories: Publication; Types: Citation; Tags: M1-Birds
View more...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.