Skip to main content

Dominique Bachelet

thumbnail
The MC2 model projects an overall increase in carbon capture in conterminous United States during the 21st century while also simulating a rise in fire causing much carbon loss. Carbon sequestration in soils is critical to prevent carbon losses from future disturbances, and we show that natural ecosystems store more carbon belowground than managed systems do. Natural and human-caused disturbances affect soil processes that shape ecosystem recovery and competitive interactions between native, exotics, and climate refugees. Tomorrow's carbon budgets will depend on how land use, natural disturbances, and climate variability will interact and affect the balance between carbon capture and release.
Categories: Publication; Types: Citation
thumbnail
Maintaining the native prairie lands of the Northern Great Plains (NGP), which provide an important habitat for declining grassland species, requires anticipating the effects of increasing atmospheric carbon dioxide (CO2) concentrations and climate change on the region’s vegetation. Specifically, climate change threatens NGP grasslands by increasing the potential encroachment of native woody species into areas where they were previously only present in minor numbers. This project used a dynamic vegetation model to simulate vegetation type (grassland, shrubland, woodland, and forest) for the NGP for a range of projected future climates and relevant management scenarios. Comparing results of these simulations illustrates...
FY2015The Northwestern Great Basin ecoregion is one of the most intact ecosystems in the west. It is also a biological hotspot for migratory birds, greater sage-grouse and a stronghold for pronghorn antelope. However, altered fire regimes, invasive species, water scarcity, development, and climate change threaten the integrity of this landscape. Several efforts are ongoing for individual species, specific threats or sub-geographies, and over 60 existing plans and assessments have been identified for the region. This project will pull the pieces together to create a holistic view of shared priorities on the landscape.
Categories: Data, Project; Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: Alford Desert, Alford Desert, Alford Desert, Applications and Tools, California, All tags...
Abstract (from PLoS ONE): To develop effective long-term strategies, natural resource managers need to account for the projected effects of climate change as well as the uncertainty inherent in those projections. Vegetation models are one important source of projected climate effects. We explore results and associated uncertainties from the MC2 Dynamic Global Vegetation Model for the Pacific Northwest west of the Cascade crest. We compare model results for vegetation cover and carbon dynamics over the period 1895–2100 assuming: 1) unlimited wildfire ignitions versus stochastic ignitions, 2) no fire, and 3) a moderate CO2 fertilization effect versus no CO2fertilization effect. Carbon stocks decline in all scenarios,...
Land managers in the Great Basin are working to maintain or restore sagebrush ecosystems as climate change exacerbates existing threats. Web applications delivering climate change and climate impacts information have the potential to assist their efforts. Although many web applications containing climate information currently exist, few have been co-produced with land managers or have incorporated information specifically focused on land managers’ needs. Through surveys and interviews, we gathered detailed feedback from federal, state, and tribal sagebrush land managers in the Great Basin on climate information web applications targeting land management. We found that a) managers are searching for weather and climate...
View more...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.