|
Atmospheric depostion and stream discharge and solutes were measured for three years (September 1984 - August 1987) in two mixed conifer watersheds in Sequoia National Park, in the southern Sierra Nevada of California. The Log Creek watershed (50 ha, 2067-2397 m elev.) is drained by a perennial stream, while Tharp's Creek watershed (13 ha, 2067-2255 m elev.) contains an intermittent stream. Dominant trees in the area include Abies concolor (white fir), Sequoiadendron giganteum (giant sequoia), A. magnifica (red fir), and Pinus lambertiana (sugar pine). Bedrock is predominantly granite and granodiorite, and the soils are mostly Pachic Xerumbrepts. Over the three year period, sulfate (SO42-), nitrate (NO3-), and chloride...
|
As the earth system changes in response to human activities, a critical objective is to predict how biogeochemical process rates (e.g. nitrification, decomposition) and ecosystem function (e.g. net ecosystem productivity) will change under future conditions. A particular challenge is that the microbial communities that drive many of these processes are capable of adapting to environmental change in ways that alter ecosystem functioning. Despite evidence that microbes can adapt to temperature, precipitation regimes, and redox fluctuations, microbial communities are typically not optimally adapted to their local environment. For example, temperature optima for growth and enzyme activity are often greater than in situ...
|
We employed grass and forest versions of the CENTURY model under a range of N deposition values (0.02–1.60 g N m−2 y−1) to explore the possibility that high observed lake and stream N was due to terrestrial N saturation of alpine tundra and subalpine forest in Loch Vale Watershed, Rocky Mountain National Park, Colorado. Model results suggest that N is limiting to subalpine forest productivity, but that excess leachate from alpine tundra is sufficient to account for the current observed stream N. Tundra leachate, combined with N leached from exposed rock surfaces, produce high N loads in aquatic ecosystems above treeline in the Colorado Front Range. A combination of terrestrial leaching, large N inputs from snowmelt,...
|
|