Skip to main content

Fleming, S. W.

We applied nonparametric statistical techniques to historical streamflow data from five glacierized and four nonglacierized watersheds in southwest Yukon and northwestern British Columbia, Canada, to determine whether rivers with and without catchment glacial cover respond in significantly different ways to a warming climate. The analysis was posed in terms of contrasts between the two groups with respect to long-term trends in annual time series of total river flow volume. We found that glacier-fed rivers grew larger and nival streams progressively smaller over the historical record under an observed regional warming trend. Although some of these trend effects are subtle, the overall result was statistically significant...
thumbnail
We applied nonparametric statistical techniques to historical streamflow data from five glacierized and four nonglacierized watersheds in southwest Yukon and northwestern British Columbia, Canada, to determine whether rivers with and without catchment glacial cover respond in significantly different ways to a warming climate. The analysis was posed in terms of contrasts between the two groups with respect to long-term trends in annual time series of total river flow volume. We found that glacier-fed rivers grew larger and nival streams progressively smaller over the historical record under an observed regional warming trend. Although some of these trend effects are subtle, the overall result was statistically significant...
We applied nonparametric statistical techniques to historical streamflow data from five glacierized and four nonglacierized watersheds in southwest Yukon and northwestern British Columbia, Canada, to determine whether rivers with and without catchment glacial cover respond in significantly different ways to a warming climate. The analysis was posed in terms of contrasts between the two groups with respect to long-term trends in annual time series of total river flow volume. We found that glacier-fed rivers grew larger and nival streams progressively smaller over the historical record under an observed regional warming trend. Although some of these trend effects are subtle, the overall result was statistically significant...
We applied nonparametric statistical techniques to historical streamflow data from five glacierized and four nonglacierized watersheds in southwest Yukon and northwestern British Columbia, Canada, to determine whether rivers with and without catchment glacial cover respond in significantly different ways to a warming climate. The analysis was posed in terms of contrasts between the two groups with respect to long-term trends in annual time series of total river flow volume. We found that glacier-fed rivers grew larger and nival streams progressively smaller over the historical record under an observed regional warming trend. Although some of these trend effects are subtle, the overall result was statistically significant...
We applied nonparametric statistical techniques to historical streamflow data from five glacierized and four nonglacierized watersheds in southwest Yukon and northwestern British Columbia, Canada, to determine whether rivers with and without catchment glacial cover respond in significantly different ways to a warming climate. The analysis was posed in terms of contrasts between the two groups with respect to long-term trends in annual time series of total river flow volume. We found that glacier-fed rivers grew larger and nival streams progressively smaller over the historical record under an observed regional warming trend. Although some of these trend effects are subtle, the overall result was statistically significant...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.