Skip to main content

French, Nancy Hitchcock Farwell

The goal of research was to measure and evaluate the impact of fire on land surface albedo and carbon exchange in the boreal region of Alaska by employing remote sensing and geospatial methods. Two research studies explore the landscape-scale impacts of fire on land cover and energy balance and broad-scale impact on carbon exchange. Summertime land surface albedo change from fire disturbance in an Alaska black spruce dominated landscape was studied using Landsat image data. Albedo is key in determining surface net radiation and can be dramatically changed by fire. Fire-induced albedo change was found to be spatially and temporally variable based on pre-burn vegetation, canopy density, burn severity, and site age....
thumbnail
The goal of research was to measure and evaluate the impact of fire on land surface albedo and carbon exchange in the boreal region of Alaska by employing remote sensing and geospatial methods. Two research studies explore the landscape-scale impacts of fire on land cover and energy balance and broad-scale impact on carbon exchange. Summertime land surface albedo change from fire disturbance in an Alaska black spruce dominated landscape was studied using Landsat image data. Albedo is key in determining surface net radiation and can be dramatically changed by fire. Fire-induced albedo change was found to be spatially and temporally variable based on pre-burn vegetation, canopy density, burn severity, and site age....
The goal of research was to measure and evaluate the impact of fire on land surface albedo and carbon exchange in the boreal region of Alaska by employing remote sensing and geospatial methods. Two research studies explore the landscape-scale impacts of fire on land cover and energy balance and broad-scale impact on carbon exchange. Summertime land surface albedo change from fire disturbance in an Alaska black spruce dominated landscape was studied using Landsat image data. Albedo is key in determining surface net radiation and can be dramatically changed by fire. Fire-induced albedo change was found to be spatially and temporally variable based on pre-burn vegetation, canopy density, burn severity, and site age....
The goal of research was to measure and evaluate the impact of fire on land surface albedo and carbon exchange in the boreal region of Alaska by employing remote sensing and geospatial methods. Two research studies explore the landscape-scale impacts of fire on land cover and energy balance and broad-scale impact on carbon exchange. Summertime land surface albedo change from fire disturbance in an Alaska black spruce dominated landscape was studied using Landsat image data. Albedo is key in determining surface net radiation and can be dramatically changed by fire. Fire-induced albedo change was found to be spatially and temporally variable based on pre-burn vegetation, canopy density, burn severity, and site age....
The goal of research was to measure and evaluate the impact of fire on land surface albedo and carbon exchange in the boreal region of Alaska by employing remote sensing and geospatial methods. Two research studies explore the landscape-scale impacts of fire on land cover and energy balance and broad-scale impact on carbon exchange. Summertime land surface albedo change from fire disturbance in an Alaska black spruce dominated landscape was studied using Landsat image data. Albedo is key in determining surface net radiation and can be dramatically changed by fire. Fire-induced albedo change was found to be spatially and temporally variable based on pre-burn vegetation, canopy density, burn severity, and site age....
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.