Skip to main content

Furu Mienis

thumbnail
Examination of food webs and trophic niches provide insights into organisms' functional ecology, yet few studies have examined trophodynamics within submarine canyons, where the interaction of canyon morphology and oceanography influences habitat provision and food deposition. Using stable isotope analysis and Bayesian ellipses, we documented deep-sea food-web structure and trophic niches in Baltimore Canyon and the adjacent open slopes in the US Mid-Atlantic Region. Results revealed isotopically diverse feeding groups, comprising approximately 5 trophic levels. Regression analysis indicated that consumer isotope data are structured by habitat (canyon vs. slope), feeding group, and depth. Benthic feeders were enriched...
thumbnail
Examination of food webs and trophic niches provide insight into organisms’ functional ecology, yet few studies have examined the trophodynamics within submarine canyons, where the interaction of morphology and oceanography influences food deposition. Stable isotope analysis and Bayesian ellipses documented deep-sea food web structure and trophic niches in Baltimore Canyon and the adjacent open slopes in the U.S. Mid-Atlantic Region. Results revealed isotopically diverse feeding groups, comprising approximately 5 trophic levels. Regression analysis indicated that consumer isotope data are structured by site (canyon vs. slope), feeding group, and depth. Benthic feeders were enriched in 13C and 15N relative to suspension...
thumbnail
One of the greatest drivers of historical nutrient and sediment transport into the Gulf of Mexico is the unprecedented scale and intensity of land use change in the Mississippi River Basin. These landscape changes are linked to enhanced fluxes of carbon and nitrogen pollution from the Mississippi River, and persistent eutrophication and hypoxia in the northern Gulf of Mexico. Increased terrestrial runoff is one hypothesis for recent enrichment in bulk nitrogen isotope (δ15N) values, a tracer for nutrient source, observed in a Gulf of Mexico deep-sea coral record. However, unambiguously linking anthropogenic land use change to whole scale shifts in downstream Gulf of Mexico biogeochemical cycles is difficult. Here...
thumbnail
Time-series of sediment chemistry, including organic biomarker composition and bulk inorganic geochemical analytes, from samples collected over a one-year period in a sediment trap. The sediment traps were deployed at a depth between 603 m to 1318 m, and they were programmed to rotate a 250 mL sample bottle at 30 d intervals, delivering 12 samples during the 1-year deployment between August 2012 and June 2013. In addition, dissolved water column nutrient concentrations and water column trace element particulate concentrations were collected in Baltimore Canyon on the U.S. Mid-Atlantic Bight (MAB).
thumbnail
Deep-sea ecosystems encompass unique and often fragile communities that are sensitive to a variety of anthropogenic and natural impacts. After the 2010 Deepwater Horizon (DWH) oil spill, sampling efforts documented the acute impact of the spill on some deep-sea coral colonies. To investigate the impact of the DWH spill on quality and quantity of biomass delivered to the deep-sea, a suite of geochemical tracers (e.g., stable and radio-isotopes, lipid biomarkers, and compound specific isotopes) was measured from monthly sediment trap samples deployed near a high-density deep-coral site in the Viosca Knoll area of the north-central Gulf of Mexico prior to (Oct-2008 to Sept-2009) and after the spill (Oct-10 to Sept-11)....
View more...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.