Skip to main content
USGS - science for a changing world

G.M. Reimer

thumbnail
A technique using a small diameter probe and a portable alpha-particle scintillometer for sample collection and analysis has been developed. It is fast, efficient, cost-effective, and can be modified to accommodate a wide spectrum of sampling conditions. When soil-gas sampling for radon is combined with geophysical gamma-ray measurements, pedological characteristics of surficial materials, and geologic knowledge of bedrock, the combination forms a powerful technological basis for estimating radon potential of soils. The method can help provide information on a short time-frame so that local governments, land developers, and builders can take appropriate measures when planning new construction.
Categories: Publication; Types: Citation
thumbnail
Decreases in the helium concentration of soil-gas have been observed to precede six of eight recent central California earthquakes. Ten monitoring stations were established near Hollister, California and along the San Andreas Fault to permit gas collection. The data showed decreases occurring a few weeks before the earthquakes and concentratiosn returned to prequake levels either shortly before or after the earthquakes.-Author
thumbnail
A reconnaissance soil-gas helium survey was made of the Ely, Nevada and Delta, Utah 1? x 2? quadrangles in the Basin and Range Province. Helium concentrations in 510 samples ranged from -147 to 441 ppb He with respect to ambient air. The median helium value for the study area was 36 ppb. Concentrations of more than 100 ppb He, and less than -20 ppb He, occur more commonly in the Ely Quadrangle and are especially numerous in the western one-half of this quadrangle. The data are presented both in figures and tables, and some of the geologic factors that may affect the helium distribution are discussed.
Categories: Publication; Types: Citation; Tags: Open-File Report
thumbnail
The fission track technique, utilizing the neutron-induced fission of uranium-235, provides a versatile analytical method for the routine analysis of uranium in liquid samples of natural water. A detector is immersed in the sample and both are irradiated. The fission track density observed in the detector is directly proportional to the uranium concentration. The specific advantages of this technique are: (1) only a small quantity of sample, typically 0.1-1 ml, is needed; (2) no sample concentration is necessary; (3) it is capable of providing analyses with a lower reporting limit of 1 ??g per liter; and (4) the actual time spent on an analysis can be only a few minutes. This paper discusses and describes the method....
View more...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.