Skip to main content

Garbrecht, J.

thumbnail
This paper discusses the application of digital terrain analysis modeling techniques to the parameterization of a semi-distributed hydrologic model. Most current techniques for deriving physiographic parameters in watershed analyses, including those using commercial geographic information systems (GIS), are tedious, costly and time consuming. The demands of these techniques result in them usually being limited in practical application to deriving parameters at only one level of detail or for only one set of sub-basins. This paper presents a computerized interface (SLURPAZ) that was developed to combine the output of an established digital terrain analysis model (TOPAZ) with digital land cover data to derive all...
This paper discusses the application of digital terrain analysis modeling techniques to the parameterization of a semi-distributed hydrologic model. Most current techniques for deriving physiographic parameters in watershed analyses, including those using commercial geographic information systems (GIS), are tedious, costly and time consuming. The demands of these techniques result in them usually being limited in practical application to deriving parameters at only one level of detail or for only one set of sub-basins. This paper presents a computerized interface (SLURPAZ) that was developed to combine the output of an established digital terrain analysis model (TOPAZ) with digital land cover data to derive all...
This paper discusses the application of digital terrain analysis modeling techniques to the parameterization of a semi-distributed hydrologic model. Most current techniques for deriving physiographic parameters in watershed analyses, including those using commercial geographic information systems (GIS), are tedious, costly and time consuming. The demands of these techniques result in them usually being limited in practical application to deriving parameters at only one level of detail or for only one set of sub-basins. This paper presents a computerized interface (SLURPAZ) that was developed to combine the output of an established digital terrain analysis model (TOPAZ) with digital land cover data to derive all...
This paper discusses the application of digital terrain analysis modeling techniques to the parameterization of a semi-distributed hydrologic model. Most current techniques for deriving physiographic parameters in watershed analyses, including those using commercial geographic information systems (GIS), are tedious, costly and time consuming. The demands of these techniques result in them usually being limited in practical application to deriving parameters at only one level of detail or for only one set of sub-basins. This paper presents a computerized interface (SLURPAZ) that was developed to combine the output of an established digital terrain analysis model (TOPAZ) with digital land cover data to derive all...
This paper discusses the application of digital terrain analysis modeling techniques to the parameterization of a semi-distributed hydrologic model. Most current techniques for deriving physiographic parameters in watershed analyses, including those using commercial geographic information systems (GIS), are tedious, costly and time consuming. The demands of these techniques result in them usually being limited in practical application to deriving parameters at only one level of detail or for only one set of sub-basins. This paper presents a computerized interface (SLURPAZ) that was developed to combine the output of an established digital terrain analysis model (TOPAZ) with digital land cover data to derive all...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.