Skip to main content

Gowman, Lynn M.

Fire regimes of the Canadian boreal forest are driven by certain environmental factors that are highly variable from year to year (e.g., temperature, precipitation) and others that are relatively stable (e.g., land cover, topography). Studies examining the relative influence of these environmental drivers on fire activity suggest that models making explicit use of interannual variability appear to better capture years of climate extremes, whereas those using a temporal average of all available years highlight the importance of land-cover variables. It has been suggested that fire models built at different temporal resolutions may provide a complementary understanding of controls on fire regimes, but this claim has...
Fire regimes of the Canadian boreal forest are driven by certain environmental factors that are highly variable from year to year (e.g., temperature, precipitation) and others that are relatively stable (e.g., land cover, topography). Studies examining the relative influence of these environmental drivers on fire activity suggest that models making explicit use of interannual variability appear to better capture years of climate extremes, whereas those using a temporal average of all available years highlight the importance of land-cover variables. It has been suggested that fire models built at different temporal resolutions may provide a complementary understanding of controls on fire regimes, but this claim has...
Fire regimes of the Canadian boreal forest are driven by certain environmental factors that are highly variable from year to year (e.g., temperature, precipitation) and others that are relatively stable (e.g., land cover, topography). Studies examining the relative influence of these environmental drivers on fire activity suggest that models making explicit use of interannual variability appear to better capture years of climate extremes, whereas those using a temporal average of all available years highlight the importance of land-cover variables. It has been suggested that fire models built at different temporal resolutions may provide a complementary understanding of controls on fire regimes, but this claim has...
thumbnail
Fire regimes of the Canadian boreal forest are driven by certain environmental factors that are highly variable from year to year (e.g., temperature, precipitation) and others that are relatively stable (e.g., land cover, topography). Studies examining the relative influence of these environmental drivers on fire activity suggest that models making explicit use of interannual variability appear to better capture years of climate extremes, whereas those using a temporal average of all available years highlight the importance of land-cover variables. It has been suggested that fire models built at different temporal resolutions may provide a complementary understanding of controls on fire regimes, but this claim has...
Fire regimes of the Canadian boreal forest are driven by certain environmental factors that are highly variable from year to year (e.g., temperature, precipitation) and others that are relatively stable (e.g., land cover, topography). Studies examining the relative influence of these environmental drivers on fire activity suggest that models making explicit use of interannual variability appear to better capture years of climate extremes, whereas those using a temporal average of all available years highlight the importance of land-cover variables. It has been suggested that fire models built at different temporal resolutions may provide a complementary understanding of controls on fire regimes, but this claim has...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.