Skip to main content

Harte, John

Gas exchange and water relations responses to warming were compared for two shrub species, Artemisia tridentata spp. vaseyana (Asteraceae), a widely distributed evergreen species of the Great Basin and the western slope of the Rocky Mountains, and Pentaphylloides floribunda (Rosaceae), a deciduous shrub limited in distribution to moist, high-elevation meadows. Plants were exposed to an in situ infrared (IR) climate change manipulation at the Rocky Mountain Biological Laboratory, near Crested Butte, CO. Measurements of gas exchange and water relations were made on the two species in July and August, 1993 from plants growing in situ in infrared-heated and control plots. Carbon dioxide uptake, water loss, leaf temperature,...
We investigated experimental warming and simulated grazing (clipping) effects on rangeland quality, as indicated by vegetation production and nutritive quality, in winter-grazed meadows and summer-grazed shrublands on the Tibetan Plateau, a rangeland system experiencing climatic and pastoral land use changes. Warming decreased total aboveground net primary productivity (ANPP) by 40 g.m?�.yr?� at the meadow habitats and decreased palatable ANPP (total ANPP minus non-palatable forb ANPP) by 10 g.m?�.yr?� at both habitats. The decreased production of the medicinal forb Gentiana straminea and the increased production of the non-palatable forb Stellera chamaejasme with warming also reduced rangeland quality. At the shrubland...
Pathogens and herbivores can severely reduce host fitness, potentially leading to altered succession rates and changes in plant community composition. Thus, to predict vegetation dynamics under climate change, it is necessary to understand how plant pathogens and herbivores will respond. Pathogens and herbivores are predicted to increase under climate warming because the amount of time available for growth and reproduction will increase. To test this prediction, we used a warming experiment in which heaters were suspended over a natural montane meadow for 12 years. In the summer of 2002, we quantified damage by all the observable (aboveground) pathogens and herbivores on six of the most common plant species (Artemisia...
Global climate change is predicted to increase the intensity and frequency of future drought, which in turn may be expected to induce a range of biogeochemical climate feedbacks. A combination of model simulations and observational studies of a recent wide-scale drought, suggested that the drought induced substantial terrestrial ecosystem carbon loss, but hypothesized mechanisms could not be evaluated via comparison to a control. Here, we investigated carbon-cycle responses to climate changes by combining results from a controlled 15-year ecosystem warming experiment in montane grassland with observational data from before and during the recent drought. We found that both experimental warming and real-world drought...
View more...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.