Skip to main content

Hidalgo, Hugo G

Low-frequency (periodicities lower than 20 years) hydrologic variability in the western United States over the past 500 years is studied using available tree-ring reconstructions of Palmer Drought Severity Index (PDSI), streamflow, and climate indices. Leading rotated principal component (RPC) scores of a gridded tree-ring reconstruction of the PDSI from 1525 to 1975 are significantly correlated with indices representing large-scale climate variations from the Pacific and Atlantic Oceans. RPC1 (31%) is related to the influence of North Pacific sea surface temperature (SST) variations, indexed by the Pacific Decadal Oscillation (PDO). RPC2 (24%) is apparently related to North Atlantic SST variations, indexed by the...
The relations of decadal to multidecadal (D2M) variability in global sea-surface temperatures (SSTs) with D2M variability in the flow of the Upper Colorado River Basin (UCRB) are examined for the years 1906-2003. Results indicate that D2M variability of SSTs in the North Atlantic, North Pacific, tropical Pacific, and Indian Oceans is associated with D2M variability of the UCRB. A principal components analysis (with varimax rotation) of detrended and 11-year smoothed global SSTs indicates that the two leading rotated principal components (RPCs) explain 56% of the variability in the transformed SST data. The first RPC (RPC1) strongly reflects variability associated with the Atlantic Multidecadal Oscillation and the...
thumbnail
This article applies formal detection and attribution techniques to investigate the nature of observed shifts in the timing of streamflow in the western United States. Previous studies have shown that the snow hydrology of the western United States has changed in the second half of the twentieth century. Such changes manifest themselves in the form of more rain and less snow, in reductions in the snow water contents, and in earlier snowmelt and associated advances in streamflow ?center? timing (the day in the ?water-year? on average when half the water-year flow at a point has passed). However, with one exception over a more limited domain, no other study has attempted to formally attribute these changes to anthropogenic...
Recent research suggests a link between drought occurrence in the conterminous United States (US) and sea surface temperature (SST) variability in both the tropical Pacific and North Atlantic Oceans on decadal to multidecadal (D2M) time scales. Results show that the Atlantic Multidecadal Oscillation (AMO) is the most consistent indicator of D2M drought variability in the conterminous US during the 20th century, but during the 19th century the tropical Pacific is a more consistent indicator of D2 M drought. The interaction between El Niño-Southern Oscillation (ENSO) and the AMO explain a large part of the D2M drought variability in the conterminous US. More modeling studies are needed to reveal possible mechanisms...
Categories: Publication; Types: Citation
Recent research suggests a link between drought occurrence in the conterminous United States (US) and sea surface temperature (SST) variability in both the tropical Pacific and North Atlantic Oceans on decadal to multidecadal (D2M) time scales. Results show that the Atlantic Multidecadal Oscillation (AMO) is the most consistent indicator of D2M drought variability in the conterminous US during the 20th century, but during the 19th century the tropical Pacific is a more consistent indicator of D2 M drought. The interaction between El Niño-Southern Oscillation (ENSO) and the AMO explain a large part of the D2M drought variability in the conterminous US. More modeling studies are needed to reveal possible mechanisms...
Categories: Publication; Types: Citation
View more...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.