Skip to main content

Hong He

thumbnail
Forests in the eastern United States are changing in response to ecological succession, tree harvest, and other disturbances and climate change has the potential to further change these forests. We predicted the distribution and abundance of common tree species across portions of the eastern U.S. under alternative climate scenarios that varied in the amount of warming by the end of the century from 1.1 to 4.2 degrees celsius. We used a forest landscape change model to forecast changes in tree abundances and distribution in the North Atlantic region of the U.S. while accounting for climate change, succession, and harvest. We then considered a broader region of the U.S. and combined our results with results from previous...
This project will determine the effects of climate change, urbanization, succession, disturbance, and management on forest landscape change in the Gulf Coastal Plains and Ozarks (GCPO) region for the period 2000-2100. The effects will be analyzed at 90-270 m resolution for the entire region under 4 climate scenarios, 3 forest management scenarios, and 2 urban growth scenarios.
thumbnail
Under shifting temperatures and precipitation patterns, Midwestern states are increasingly at risk from non-native invasive plants that are changing the composition, structure, and function of native forests. Non-native invasive plants impact the resilience and sustainability of forest communities by outcompeting native tree seedlings and diverse flowering plants, and by altering ecologically important patterns of natural processes like fire, wind, drought, and flooding. Land managers facing this threat are having to not only consider current non-native invasive plants within their landscapes but also future impacts with the expansion of these plants northward and westward under a changing climate, especially as...
This research will (1) develop a multi-model application to simulate streamflow using a monthly water balance model and daily time step hydrologic models (physical-process based and statistical) for all watersheds of the Gulf Coastal Plains and Ozarks Landscape Conservation Cooperative and (2) provide products from these models (flow characteristics - magnitude, timing, duration, rate of change, and frequency) for a range of configurations (current and future climate and landscape) through a web interface which can be used to inform management decisions.
thumbnail
Projecting the effects of climate change on plant and animal species distributions and abundance is critical to successful long‐term conservation and restoration efforts. There have been significant recent advances made in the areas of: (1) climate forecasts; (2) habitat niche modeling; (3) mechanistic modeling; and (4) observation techniques and networks. However, projections of biological change are fundamentally limited by a lack of integration and inter‐comparison between these various forecasting approaches. The proposed working group will focus on integrating ecological forecasting methods for two well studied invasive species: cheatgrass (Bromus tectorum) and gypsy moth (Lymantria dispar). Our goal is to...
View more...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.