Skip to main content

J.A. Kleypas

thumbnail
A user-friendly, stand-alone application for the calculation of carbonate system parameters was developed by the U.S. Geological Survey Florida Shelf Ecosystems Response to Climate Change Project in response to its Ocean Acidification Task. The application, by Mark Hansen and Lisa Robbins, USGS St. Petersburg, FL, Joanie Kleypas, NCAR, Boulder, CO, and Stephan Meylan, Jacobs Technology, St. Petersburg, FL, is intended as a follow-on to CO2SYS, originally developed by Lewis and Wallace (1998) and later modified for Microsoft Excel? by Denis Pierrot (Pierrot and others, 2006). Besides eliminating the need for using Microsoft Excel on the host system, CO2calc offers several improvements on CO2SYS, including: An improved...
Categories: Publication; Types: Citation; Tags: Open-File Report
thumbnail
A coral reef represents the net accumulation of calcium carbonate (CaCO3) produced by corals and other calcifying organisms. If calcification declines, then reef-building capacity also declines. Coral reef calcification depends on the saturation state of the carbonate mineral aragonite of surface waters. By the middle of the next century, an increased concentration of carbon dioxide will decrease the aragonite saturation state in the tropics by 30 percent and biogenic aragonite precipitation by 14 to 30 percent. Coral reefs are particularly threatened, because reef-building organisms secrete metastable forms of CaCO3, but the biogeochemical consequences on other calcifying marine ecosystems may be equally severe.
Categories: Publication; Types: Citation; Tags: Science
thumbnail
McNeil et al. [2004] attempt to address an important question about the interactions of temperature and carbonate chemistry on calcification, but their projected values of reef calcification are based on assumptions that ignore critical observational and experimental literature. Certainly, more research is needed to better understand how changing temperatures and carbonate chemistry will affect not only coral reef calcification, but coral survival. As discussed above, the McNeil et al. [2004] analysis is based on assumptions that exclude potentially important factors and therefore needs to be viewed with caution. Copyright 2005 by the American Geophysical Union.
thumbnail
Marginal reef habitats are regarded as regions where coral reefs and coral communities reflect the effects of steady-state or long-term average environmental limitations. We used classifications based on this concept with predicted time-variant conditions of future climate to develop a scenario for the evolution of future marginality. Model results based on a conservative scenario of atmospheric CO2 increase were used to examine changes in sea surface temperature and aragonite saturation state over the Pacific Ocean basin until 2069. Results of the projections indicated that essentially all reef locations are likely to become marginal with respect to aragonite saturation state. Significant areas, including some...
Categories: Publication; Types: Citation
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.