Skip to main content

James V. Jones III

thumbnail
This report is a companion to the new Geologic Map of Mauritania (Bradley and others, 2015; referred to herein as “Deliverable 51”) and the new Structural Geologic Map of Mauritania (Bradley and others, 2015a; referred to herein as “Deliverable 52”). Section 1 contains explanatory information for these two digital maps. Section 2 covers the analytical methods used in obtaining new U-Pb ages from 9 igneous rock samples, new detrital zircon ages from 40 sedimentary or metasedimentary rock samples, and new 40Ar/39Ar ages from 12 samples of metamorphic rocks and veins. Sections 3 through 6 present the new geochronological results, organized by region. In Section 7, we discuss implications of the new ages for the regional...
Categories: Publication; Types: Citation; Tags: Open-File Report
thumbnail
In support of regional geologic framework studies, we obtained 50 new argon-40/argon-39 (40Ar/39Ar) ages and 33 new uranium-lead (U-Pb) ages from igneous rocks of southwestern Alaska. Most of the samples are from the Sleetmute and Taylor Mountains quadrangles; smaller collections or individual samples are from the Bethel, Candle, Dillingham, Goodnews Bay, Holy Cross, Iditarod, Kantishna River, Lake Clark, Lime Hills, McGrath, Medfra, Talkeetna, and Tanana quadrangles.A U-Pb zircon age of 317.7±0.6 million years (Ma) reveals the presence of Pennsylvanian intermediate igneous (probably volcanic) rocks in the Tikchik terrane, Bethel quadrangle. A U-Pb zircon age of 229.5±0.2 Ma from gabbro intruding the Rampart Group...
Categories: Publication; Types: Citation; Tags: Professional Paper
thumbnail
The youngest part of the Farewell terrane in interior Alaska (USA) is the enigmatic Devonian–Cretaceous Mystic subterrane. New U-Pb detrital zircon, fossil, geochemical, neodymium isotopic, and petrographic data illuminate the origin of the rocks of this subterrane. The Devonian–Permian Sheep Creek Formation yielded youngest detrital zircons of Devonian age, major detrital zircon age probability peaks between ca. 460 and 405 Ma, and overall age spectra like those from the underlying Dillinger subterrane. Samples are sandstones rich in sedimentary lithic clasts, and differ from approximately coeval strata to the east that have abundant volcanic lithic clasts and late Paleozoic detrital zircons. The Permian Mount...
Categories: Publication; Types: Citation; Tags: Geosphere
thumbnail
The Cenozoic Susitna basin lies within an enigmatic lowland surrounded by the Central Alaska Range, Western Alaska Range (including the Tordrillo Mountains), and Talkeetna Mountains in south-central Alaska. Some previous interpretations show normal faults as the defining structures of the basin (e.g., Kirschner, 1994). However, analysis of new and existing geophysical data shows predominantly (Late Oligocene to present) thrust and reverse fault geometries in the region, as previously proposed by Hackett (1978). A key example is the Beluga Mountain fault where a 50-mGal gravity gradient, caused by the density transition from the igneous bedrock of Beluga Mountain to the >4-km-thick Cenozoic sedimentary section of...
Categories: Publication; Types: Citation; Tags: Geosphere
thumbnail
New detrital zircon U-Pb data from the Farewell terrane of interior Alaska illuminate its early provenance evolution and connections with other Alaskan terranes. Five samples come from Neoproterozoic units in the central Farewell terrane. Basal “ferruginous beds” and the overlying Windy Fork Formation have prominent detrital zircon age populations between 2000 and 1800 Ma, with the Windy Fork Formation also having major age peaks between 700 and 600 Ma. Younger (Lone Formation) samples yield grains mainly between 750 and 550 Ma, with fewer older Proterozoic grains. Eleven samples come from deep-water early Paleozoic rocks (southeastern Farewell terrane). Ordovician sandstone (Post River Formation) has a major age...
Categories: Publication; Types: Citation; Tags: Geosphere
View more...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.