Skip to main content

Jason Rohweder

thumbnail
Floodplain inundation is believed to be the dominant physical driver of an array of ecosystem patterns and processes in the Upper Mississippi River System (UMRS). Here, we present the results of a geospatial surface-water connectivity model in support of ecological investigations fully described in the USGS Open File Report entitled “Indicators of Ecosystem Structure and Function for the Upper Mississippi River System” (De Jager et al., in review). Briefly, we identified likely instances of floodplain submergence by comparing a daily time series of gage-derived water surface elevations to topo-bathymetric data modified to account for slopes and hydrologic routing. The resulting raster attribute table contains columns...
thumbnail
Floodplain inundation is believed to be the dominant physical driver of an array of ecosystem patterns and processes in the Upper Mississippi River System (UMRS). Here, we present the results of a geospatial surface-water connectivity model in support of ecological investigations fully described in the USGS Open File Report entitled “Indicators of Ecosystem Structure and Function for the Upper Mississippi River System” (De Jager et al., in review). Briefly, we identified likely instances of floodplain submergence by comparing a daily time series of gage-derived water surface elevations to topo-bathymetric data modified to account for slopes and hydrologic routing. The resulting raster attribute table contains columns...
This tool was developed to model species potential occurrences for several focal bird species classified as bottomland hardwood, forested riparian, or grassland birds. This tool was developed using existing scripts developed by the USGS GAP Analysis program ( https://gapanalysis.usgs.gov/species/data/ ). These scripts were modified to be able to calculate potential occurrence values for multiple species at once and to accommodate the alteration of the reclass tables to include a more complex habitat preference scoring system than the binary 1/0 values currently provided by the GAP program. The output of the tool consists of potential species occurrence rasters for each species, for each focal hydrologic unit...
thumbnail
The USGS Upper Midwest Environmental Sciences Center developed a Monarch Relevant Land Cover data set covering the area of Canada. We used the 2010 land cover data set produced by the tri-national North American Land Change Monitoring System (NALCMS) and supported by the Commission for Environmental Cooperation (CEC) that depicts year 2010 land cover across North America at 30-meter spatial resolution, and incorporated additional spatially-explicit information to develop this land cover map. Additional sources of information included 2004 railroad data provided by The Atlas of Canada and the CEC, 2017 roads data provided by Statistics Canada, 2017 protected areas data provided by the CEC, and 2016 Canada provincial/territory...
thumbnail
Separate data for floodplain elevation and bathymetry were collected on the Upper Mississippi River System (UMRS) by the US Army Corps of Engineers (USACE), Upper Mississippi River Restoration (UMRR) Program. While many information needs can be met by using these data separately, in many cases seamless elevation data across the river and its floodplain are needed. This seamless elevation surface was generated by merging lidar (i.e., floodplain elevation) and bathymetry data. Merging the data required special processing in the areas of transition between the two sources of data.
View more...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.