Skip to main content

Jeffrey A Coe

thumbnail
Subaerial landslides at the head of Barry Arm Fjord in southern Alaska could generate tsunamis (if they rapidly failed into the Fjord) and are therefore a potential threat to people, marine interests, and infrastructure throughout the Prince William Sound region. Knowledge of ongoing landslide movement is essential to understanding the threat posed by the landslides. Because of the landslides' remote location, field-based ground monitoring is challenging. Alternatively, periodic acquisition and interferometric processing of satellite-based synthetic aperture radar data provide an accurate means to remotely monitor landslide movement. Interferometric synthetic aperture radar (InSAR) uses two Synthetic Aperture...
thumbnail
Chalk Cliffs, located 8 miles southwest of Buena Vista, Colorado, is one of the most active debris-flow areas in the state (U.S. Geological Survey). This "Child item" page includes videos of debris flows captured by one of the high-definition cameras at the monitoring site in Chalk Cliffs, CO. This camera (Wide-angle camera) is located near Station 1 on the opposite side of the basin with a broad view of the channel. The attached figure "station_and_camera_locations.png" provides an overview figure with the location of the three cameras and three stations along the channel. Video recording for all cameras is triggered using a rainfall threshold, derived from rainfall measurements from a rain gauge (Michel et al.,...
thumbnail
The effects of climate change have the potential to impact slope stability. Negative impacts are expected to be greatest at high northerly latitudes where degradation of permafrost in rock and soil, debuttressing of slopes as a result of glacial retreat, and changes in ocean ice-cover are likely to increase the susceptibility of slopes to landslides. In the United States, the greatest increases in air temperature and precipitation are expected to occur in Alaska. In order to assess the impact that these environmental changes will have on landslide size (magnitude), mobility, and frequency, inventories of historical landslides are needed. These inventories provide baseline data that can be used to identify changes...
thumbnail
Chalk Cliffs, located 8 miles southwest of Buena Vista, Colorado, is one of the most active debris-flow areas in the state (U.S. Geological Survey). Three stations were set up at Chalk Cliffs which are located sequentially along a channel draining the 0.3 km2 study area. These stations are equipped with rain gauges, laser distance meters, and data loggers to record rainfall and stage data (Kean, et al., 2020). This data release includes videos of debris-flows and floods captured by high-definition cameras placed at two different locations, associated with the monitoring stations, along the study area at Chalk Cliffs during 2015. Both cameras are located near the Upper Station (Station 1). One is located at the bridge...
thumbnail
This data release contains four GIS shapefiles, one Google Earth kmz file, and five metadata files that summarize results from Interferometric Synthetic Aperture Radar (InSAR) analyses in the Glacier Bay region of Alaska and British Columbia. The principal shapefile (Moving_Ground) and the kmz file (GBRegionMovingGround) contain polygons delineating slow-moving (0.5-6 cm/year in the radar line-of-sight direction) landslides and subsiding fan deltas in the region. Landslides and fan deltas were identified from displacement signals captured by InSAR interferograms of Sentinel-1 C-band Synthetic Aperture Radar images. The images were acquired at 12-day intervals from June to October from 2018 to 2020. We applied the...
View more...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.