Skip to main content

Joel H. Reynolds

Abstract (from http://bioscience.oxfordjournals.org/content/65/5/499): Rates of glacier mass loss in the northern Pacific coastal temperate rainforest (PCTR) are among the highest on Earth, and changes in glacier volume and extent will affect the flow regime and chemistry of coastal rivers, as well as the nearshore marine ecosystem of the Gulf of Alaska. Here we synthesize physical, chemical and biological linkages that characterize the northern PCTR ecosystem, with particular emphasis on the potential impacts of glacier change in the coastal mountain ranges on the surface–water hydrology, biogeochemistry, coastal oceanography and aquatic ecology. We also evaluate the relative importance and interplay between interannual...
thumbnail
As wildfire activity surges in the western U.S., managers are increasingly challenged by decisions surrounding managing post-fire environments.Changing fire regimes and warmer,drier post-fire conditions are increasing the likelihood of post-fire vegetation transitions, for example,from forest to grassland. Given the economic and ecological importance of these ecosystems, transformation is a concern for managers, policy-makers, and the public. As rapid environmental changes occur, management aimed at maintaining historical conditions will become increasingly untenable, requiring managers to make decisions that steward vegetation toward desired or novel conditions. The Resist-Accept-Direct (RAD) framework provides...
thumbnail
The Greater Yellowstone Area (GYA) is an iconic landscape with national parks, iconic species like grizzly bears and elk, and over 11,500 square miles of forest. While fires are a natural part of the GYA, climate change and land management legacies are increasing the frequency and size of severe fires. Climate change interacts with these fires to shift conifer forests to non-forested grassland and sagebrush ecosystems. These transformations impact species habitat, carbon storage, and other management goals on public lands. However, managing for “natural ecosystems” is not always possible in the face of climate change. The Resist-Accept-Direct framework (RAD) can help: under RAD, managers can resist change to maintain...
thumbnail
The United States National Park Service (NPS) declared climate change as “the greatest threat to the integrity of our national parks that we have ever experienced.” Climate change is causing not only higher average temperatures in most places but also increasing the severity of storms, the number of heatwaves and wildfires, and causing heavier rainfall. These extreme weather conditions pose major threats to National Parks, which face the loss of wildlife, plants, and important historical and cultural sites. To prevent further loss of our country’s natural and cultural heritage in the next 20 years, plans, strategies, and actions are needed now, rather than for 50-100 years into the future. This research team will...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.