Skip to main content

John W Fulton

thumbnail
This dataset contains data collected during science flights using the drone-based QCam, which is a Doppler (velocity) radar designed to measure surface velocity and compute river discharge when channel bathymetry is known. Five science flights were conducted on four rivers including the Arkansas and South Platte Rivers in Colorado and the Salcha and Tanana Rivers in Alaska. Data are presented in a comma separated values (CSV) file.
thumbnail
The U.S. Geological Survey deployed seven submersible pressure transducers on the bottom of the Salcha River in July 2018. An additional transducer was left out of the water to correct for barometric pressure fluctuations. At the time of deployment, the bank position near each transducer and the water-surface elevation were measured with Global Navigation Satellite System (GNSS) equipment. The transducers recorded a depth measurement every 15-min until the recovery of five of the seven in October. We adjusted the water elevation measured at deployment by the difference between the depth measured at deployment and each subsequent depth measurement to derive the water-surface elevation at 15-min intervals. The data...
This dataset includes vertical velocity profiles and river discharge at cross section of interest where velocity measurements were taken on the Arkansas River at Parkdale, Colorado. Each profile contains measurements at various depths at the y-axis, which is the vertical in the cross-sectional profile where the maximum velocity (umax) occurs. These measurements were taken using a FlowTracker, FlowTracker2 ® instrument (FlowTracker2, 2020) when wading was possible; if wading was not possible, measurements were taken from a boat using an acoustic Doppler current profiler (ADCP) under stationary bed conditions. Data are presented in a comma separated value (CSV) file.
thumbnail
This data release consists of three child items distinguishing the following types of data: light detection and ranging (lidar) point clouds (LPCs), digital elevation models (DEMs), and snow depth raster maps. These three data types are all derived from lidar data collected on small, uncrewed aircraft systems (sUAS) at study areas in the Upper Colorado River Basin, Colorado, from 2020 to 2022. These data were collected and generated as part of the U.S. Geological Survey's (USGS) Next Generation Water Observing Systems (NGWOS) Upper Colorado River Basin project.
thumbnail
The U.S. Geological Survey (USGS) is actively investigating the use of innovative remote-sensing techniques to estimate surface velocity and discharge of rivers in ungaged basins and river reaches that lack the infrastructure to install conventional streamgaging equipment. By coupling discharge algorithms and sensors capable of measuring surface velocity, streamgage networks can be established in regions where data collection was previously impractical or impossible. One of the remote-sensing techniques uses a Doppler (velocity) radar (QCam) mounted and integrated on a small unmanned aircraft system (sUAS or drone). QCam measures the along-track surface velocity by spot dwelling in a river cross section at a vertical...
View more...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.