Skip to main content

Kara M. Watson

thumbnail
The mapped area boundary, flood inundation extents, and depth rasters were created to provide an estimated extent of flood inundation along the Greenbrier River within the community of Alderson, West Virginia. These geospatial data include the following items: 1. greenbrier_ald_bnd; shapefile containing the polygon showing the mapped area boundary for the Greenbrier River flood maps, 2. greenbrier_ald_hwm; shapefile containing high-water mark points, 3. polygon_greenbrier_ald_hwm; shapefile containing mapped extent of flood inundation, derived from the water-surface elevation surveyed at high-water marks, 4. depth_hwm; raster file for the flood depths derived from the water-surface elevation surveyed at high-water...
thumbnail
These polygon boundaries, inundation extents, and depth rasters were created to provide an extent of flood inundation along the Lumber River within the community of Fair Bluff, North Carolina. The upstream and downstream reach extent is determined by the location of high-water marks, not extending the boundary far past the outermost high-water marks. In areas of uncertainty of flood extent, the model boundary is lined up with the flood inundation polygon extent. This boundary polygon was used to extract the final flood inundation polygon and depth layer from the flood water surface raster file. The passage of Hurricane Matthew through central and eastern North Carolina during October 7-9, 2016, brought heavy rainfall...
These polygon boundaries, inundation extents, and depth rasters were created to provide an extent of flood inundation along the Lumber River within the community of Lumberton, North Carolina. The upstream and downstream reach extent is determined by the location of high-water marks, not extending the boundary far past the outermost high-water marks. In areas of uncertainty of flood extent, the model boundary is lined up with the flood inundation polygon extent. This boundary polygon was used to extract the final flood inundation polygon and depth layer from the flood water surface raster file. The passage of Hurricane Matthew through central and eastern North Carolina during October 7-9, 2016, brought heavy rainfall...
thumbnail
The mapped area boundary, flood inundation extents, and depth rasters were created to provide an estimated extent of flood inundation along the Meadow River and Sewell Creek within the community of Rainelle, West Virginia. These geospatial data include the following items: 1. meadow_sewell_bnd; shapefile containing the polygon showing the mapped area boundary for the Meadow River and Sewell Creek flood maps, 2. meadow_sewell_hwm; shapefile containing high-water mark points, 3. polygon_meadow_sewell_hwm; shapefile containing mapped extent of flood inundation, derived from the water-surface elevation surveyed at high-water marks, 4. depth_hwm; raster file for the flood depths derived from the water-surface elevation...
thumbnail
The mapped area boundary, flood inundation extents, and depth rasters were created to provide an estimated extent of flood inundation along the Gauley River within the community of Camden-on-Gauley, West Virginia. These geospatial data include the following items: 1. gauley_bnd; shapefile containing the polygon showing the mapped area boundary for the Gauley River flood maps, 2. gauley_hwm; shapefile containing high-water mark points, 3. polygon_gauley_hwm; shapefile containing mapped extent of flood inundation, derived from the water-surface elevation surveyed at high-water marks, 4. depth_hwm; raster file for the flood depths derived from the water-surface elevation surveyed at high-water marks, 5. polygon_gauley_dem;...
View more...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.