Skip to main content

Kleidon, Axel

thumbnail
Aim Projections of future climate change suggest that regional climates may evolve to states that are unlike any climate regime found on Earth today. These climates will impose novel constraints on plant species, and are likely to give rise to plant associations that are compositionally unlike any found on Earth today. Here, we explore whether the geographical distribution of previously mapped no-analogue climates corresponds to the geographical distribution of simulated no-analogue vegetation under scenarios of global warming. Location Global landmasses. Methods We used JeDi, a process-based vegetation model that accounts for ecophysiological trade-offs in plant growth and survival, to identify the assembly of...
Aim Projections of future climate change suggest that regional climates may evolve to states that are unlike any climate regime found on Earth today. These climates will impose novel constraints on plant species, and are likely to give rise to plant associations that are compositionally unlike any found on Earth today. Here, we explore whether the geographical distribution of previously mapped no-analogue climates corresponds to the geographical distribution of simulated no-analogue vegetation under scenarios of global warming. Location Global landmasses. Methods We used JeDi, a process-based vegetation model that accounts for ecophysiological trade-offs in plant growth and survival, to identify the assembly of...
Aim Projections of future climate change suggest that regional climates may evolve to states that are unlike any climate regime found on Earth today. These climates will impose novel constraints on plant species, and are likely to give rise to plant associations that are compositionally unlike any found on Earth today. Here, we explore whether the geographical distribution of previously mapped no-analogue climates corresponds to the geographical distribution of simulated no-analogue vegetation under scenarios of global warming. Location Global landmasses. Methods We used JeDi, a process-based vegetation model that accounts for ecophysiological trade-offs in plant growth and survival, to identify the assembly of...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.