Skip to main content

Kuhn, Tyler S.

Conservation biologists understand that linking demographic histories of species at risk with causal biotic and abiotic events should help us predict the effects of ongoing biotic and abiotic change. In parallel, researchers have started to use ancient genetic information (aDNA) to explore the demographic histories of a number of species present in the Pleistocene fossil record (see, e.g. Shapiro et al. 2004). However, aDNA studies have primarily focused on identifying long-term population trends, linked to climate variability and the role of early human activity. Population trends over more recent time, e.g. during the Holocene, have been poorly explored, partly owing to analytical limitations. In this issue, Campos...
Conservation biologists understand that linking demographic histories of species at risk with causal biotic and abiotic events should help us predict the effects of ongoing biotic and abiotic change. In parallel, researchers have started to use ancient genetic information (aDNA) to explore the demographic histories of a number of species present in the Pleistocene fossil record (see, e.g. Shapiro et al. 2004). However, aDNA studies have primarily focused on identifying long-term population trends, linked to climate variability and the role of early human activity. Population trends over more recent time, e.g. during the Holocene, have been poorly explored, partly owing to analytical limitations. In this issue, Campos...
View more...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.