Skip to main content

Lawrence E. Spangler

thumbnail
Ground water is an important freshwater source for domestic and livestock uses in southeastern Utah because of the arid climate and unavailability of surface water from the San Juan River. The study area includes about 1,200 square miles in the southeastern corner of Utah (fig. 1). Precipitation on mountainous areas north, south, and east of the study area (fig. 2) seeps into the Navajo and overlying aquifers where the sandstones that contain the aquifers are exposed at the surface along mountain flanks. The ground water then moves slowly away from the mountainous areas toward the area of lowest elevation 109°30' in the region, the San Juan River. The ground water reappears at land surface where it discharges as...
Categories: Publication; Types: Citation; Tags: Fact Sheet
thumbnail
Karst aquifer systems are present throughout parts of the United States and some of its territories, and have developed in carbonate rocks (primarily limestone and dolomite) that span an interval of time encompassing more than 550 million years. The depositional environments, diagenetic processes, post-depositional tectonic events, and geochemical weathering processes that form karst aquifers are varied and complex, and involve biological, chemical, and physical changes. These factors, combined with the diverse climatic regimes under which karst development in these rocks has taken place, result in the unique dual- or triple-porosity nature of karst aquifers. These complex hydrogeologic systems typically represent...
thumbnail
The Upper Colorado River Basin (UCRB) discharges more than 6 million tons of dissolved solids annually, about 40 to 45 percent of which are attributed to agricultural activities. The U.S. Department of the Interior estimates economic damages related to salinity in excess of $330 million annually in the Colorado River Basin. Salinity in the UCRB, as measured by dissolved-solids load and concentration, has been studied extensively during the past century. Over this period, a solid conceptual understanding of the sources and transport mechanisms of dissolved solids in the basin has been developed. This conceptual understanding was incorporated into the U.S. Geological Survey Spatially Referenced Regressions on Watershed...
thumbnail
The Markagunt Plateau, in southwestern Utah, lies at an altitude of about 9,500 feet and is capped primarily by Quaternary-age basalt that overlies Eocene-age freshwater limestone of the Claron Formation. Over large parts of the Markagunt Plateau, dissolution of the Claron limestone and subsequent collapse of the overlying basalt have produced a terrain characterized by sinkholes as much as 1,000 feet across and 100 feet deep. Numerous large springs discharge from the basalt and underlying limestone on the plateau, including Mammoth Spring, one of the largest springs in Utah, with a discharge that can exceed 300 cubic feet per second. Discharge from Mammoth Spring is from the Claron Formation; however, recharge...
Categories: Publication; Types: Citation
thumbnail
The Markagunt Plateau, in southwestern Utah, lies at an altitude of about 9,500 feet, largely within Dixie National Forest. The plateau is capped primarily by Tertiary- and Quaternary-age volcanic rocks that overlie Paleocene- to Eocene-age limestone of the Claron Formation, which forms escarpments on the west and south sides of the plateau. In the southwestern part of the plateau, an extensive area of sinkholes has formed that resulted primarily from dissolution of the underlying limestone and subsequent subsidence and (or) collapse of the basalt, producing sinkholes as large as 1,000 feet across and 100 feet deep. Karst development in the Claron Formation likely has been enhanced by high infiltration rates through...
View more...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.