Skip to main content

Lichtner, P.

Geologic sequestration of CO2 in depleted oil reservoirs, while a complex issue, is thought to be a safe and effective carbon management strategy. This paper provides an overview of a NETLsponsored R&D project to predict and monitor the migration and ultimate fate of CO2 after being injected into a depleted oil reservoir as part of a micropilot scale field experiment. The Queen Formation sandstone, located in the West Pearl Queen field in SE NM, was identified as the CO2 injection site for this project. Core samples of this formation were obtained for lithologic analysis and laboratory experimentation. Preliminary flow simulations were run using this data and suggest that at least 2000 tons of CO2 can be injected...
Categories: Publication; Types: Citation; Tags: CO2, Sequestration, depleted, oil, reservoir
Idealized, basin-scale sharp-interface models of CO2 injection were constructed for the Illinois basin. Porosity and permeability were decreased with depth within the Mount Simon Formation. Eau Claire confining unit porosity and permeability were kept fixed. We used 726 injection wells located near 42 power plants to deliver 80 million metric tons of CO2/year. After 100 years of continuous injection, deviatoric fluid pressures varied between 5.6 and 18 MPa across central and southern part of the Illinois basin. Maximum deviatoric pressure reached about 50% of lithostatic levels to the south. The pressure disturbance (>0.03 MPa) propagated 10-25 km away from the injection wells resulting in significant well-well...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.