Skip to main content

Loisel, Julie

The ongoing warming in high-latitude regions may be causing rapid changes in the structure and functioning of terrestrial ecosystems. Of particular concern is the fate of belowground soil organic carbon stored in peat-accumulating wetlands, as these large carbon pools are sensitive to temperature and moisture conditions. Despite their important role in the global carbon cycle, considerable uncertainty remains over the carbon balance of northern peatlands in a changing climate. Here we examine the response of vegetation and carbon dynamics in a wet boreal peatland to recent climate warming using empirical peat core data and a new modeling approach. We observed a widespread shift from herbaceous Carex fen peat to...
The ongoing warming in high-latitude regions may be causing rapid changes in the structure and functioning of terrestrial ecosystems. Of particular concern is the fate of belowground soil organic carbon stored in peat-accumulating wetlands, as these large carbon pools are sensitive to temperature and moisture conditions. Despite their important role in the global carbon cycle, considerable uncertainty remains over the carbon balance of northern peatlands in a changing climate. Here we examine the response of vegetation and carbon dynamics in a wet boreal peatland to recent climate warming using empirical peat core data and a new modeling approach. We observed a widespread shift from herbaceous Carex fen peat to...
The ongoing warming in high-latitude regions may be causing rapid changes in the structure and functioning of terrestrial ecosystems. Of particular concern is the fate of belowground soil organic carbon stored in peat-accumulating wetlands, as these large carbon pools are sensitive to temperature and moisture conditions. Despite their important role in the global carbon cycle, considerable uncertainty remains over the carbon balance of northern peatlands in a changing climate. Here we examine the response of vegetation and carbon dynamics in a wet boreal peatland to recent climate warming using empirical peat core data and a new modeling approach. We observed a widespread shift from herbaceous Carex fen peat to...
The ongoing warming in high-latitude regions may be causing rapid changes in the structure and functioning of terrestrial ecosystems. Of particular concern is the fate of belowground soil organic carbon stored in peat-accumulating wetlands, as these large carbon pools are sensitive to temperature and moisture conditions. Despite their important role in the global carbon cycle, considerable uncertainty remains over the carbon balance of northern peatlands in a changing climate. Here we examine the response of vegetation and carbon dynamics in a wet boreal peatland to recent climate warming using empirical peat core data and a new modeling approach. We observed a widespread shift from herbaceous Carex fen peat to...
thumbnail
The ongoing warming in high-latitude regions may be causing rapid changes in the structure and functioning of terrestrial ecosystems. Of particular concern is the fate of belowground soil organic carbon stored in peat-accumulating wetlands, as these large carbon pools are sensitive to temperature and moisture conditions. Despite their important role in the global carbon cycle, considerable uncertainty remains over the carbon balance of northern peatlands in a changing climate. Here we examine the response of vegetation and carbon dynamics in a wet boreal peatland to recent climate warming using empirical peat core data and a new modeling approach. We observed a widespread shift from herbaceous Carex fen peat to...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.