Skip to main content

Michael V. Thomas

thumbnail
Population structure, distribution, abundance, and dispersal arguably underpin the entire field of animal ecology, with consequences for regional species persistence, and provision of ecosystem services. Divergent migration behaviours among individuals or among populations is an important aspect of the ecology of highly-mobile animals, allowing populations to exploit spatially- or temporally-distributed food and space resources.This study investigated the spatial ecology of lake sturgeon (Acipenser fulvescens) within the barrier free Huron-Erie Corridor (HEC), which connects Lake Huron and Lake Erie of the North American Laurentian Great Lakes.Over six years (2011 – 2016), movements of 268 lake sturgeon in the HEC...
Categories: Publication; Types: Citation; Tags: Journal of Animal Ecology
thumbnail
Several USA state, federal, and Canadian agencies study lake sturgeon (Acipenser fulvescens) within the St Clair River and Lake St Clair, collectively referred to hereafter as the St Clair River (SCR) system. Previously, there has been no set standard for determining condition for SCR system lake sturgeon. Condition measures the variation from the expected weight for length as an indicator of fatness, general well-being, gonad development, etc. The aim of this project was to determine the length-weight relationship of lake sturgeon caught from the SCR system, from which a relative condition factor (Kn) equation could be derived. Total length (TL, mm) and weight (W, kg) were measured for 1074 lake sturgeon (101 males...
thumbnail
Channelization for navigation and flood control has altered the hydrology and bathymetry of many large rivers with unknown consequences for fish species that undergo riverine migrations. In this study, we investigated whether altered flow distributions and bathymetry associated with channelization attracted migrating Lake Sturgeon (Acipenser fulvescens) into commercial navigation channels, potentially increasing their exposure to ship strikes. To address this question, we quantified and compared Lake Sturgeon selection for navigation channels vs. alternative pathways in two multi-channel rivers differentially affected by channelization, but free of barriers to sturgeon movement. Acoustic telemetry was used to quantify...
Categories: Publication; Types: Citation; Tags: PLoS ONE
thumbnail
Lake sturgeon (Acipenser fulvescens) occupy the St. Clair River, part of a channel connecting lakes Huron and Erie in the Laurentian Great Lakes. In the North Channel of the St. Clair River, juvenile lake sturgeon (3–7 years old and 582–793 mm in length) were studied to determine movement patterns and habitat usage. Fourteen juveniles were implanted with ultrasonic transmitters and tracked June–August of 2004, 2005 and 2006. Telemetry data, Geographic Information System software, side-scan sonar, video images of the river bottom, scuba diving, and benthic substrate samples were used to determine the extent and composition of habitats they occupied. Juvenile lake sturgeon habitat selection was strongly related to...
thumbnail
Several USA state, federal, and Canadian agencies study lake sturgeon (Acipenser fulvescens) within the St Clair River and Lake St Clair, collectively referred to hereafter as the St Clair River (SCR) system. Previously, there has been no set standard for determining condition for SCR system lake sturgeon. Condition measures the variation from the expected weight for length as an indicator of fatness, general well-being, gonad development, etc. The aim of this project was to determine the length–weight relationship of lake sturgeon caught from the SCR system, from which a relative condition factor (Kn) equation could be derived. Total length (TL, mm) and weight (W, kg) were measured for 1074 lake sturgeon (101 males...
View more...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.